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Abstract—We consider the coordinated transmission in the
downlink of user-centric virtual cell networks where a number
of Remote Radio Heads (RRHs) form a virtual cell to serve every
user equipment (UE). We introduce two cell formation schemes
and design the precoders in order to optimize the sum data rate
with fairness among users. The original non-convex weighted
sum-rate maximization problem is converted into an equivalent
matrix-weighted sum- mean square error (MSE) minimization
problem, which is solved by a distributed precoding algorithm.
Simulation results show that the proposed weighted minimum
mean square error (WMMSE) algorithm provides a substantial
gain over existing algorithms in terms of sum data rates with
moderate implementation cost.

I. INTRODUCTION

The next generation wireless communication systems such
as 5G will have to provide a thousand times more data traffic
than it has to today [1]. To meet the requirement, user-centric
virtual cell networks have been identified in [2] as one of five
key disruptive technologies for 5G, which can offer ubiquitous
user experience and make dramatic improvements in both
spectral and energy efficiency. In the network, a number of
distributed Remote Radio Heads (RRHs) are connected to a
central controller via high-bandwidth low-latency optics.

Many similar works exist in multi-cell cooperation networks
and distributed antenna systems (DAS). In cooperative multi-
cell networks, a novel precoding scheme is proposed in [3]
for base station cooperation in the downlink which considered
overlapped clusters. In [4], the authors propose a scheme for
both multi-cell and mixed macrocell and femtocell/picocell
network to optimize jointly the user schedule, transmit and
receive precoding vectors and the transmit power spectra.
In DAS, authors in [5] derive the optimal precoder in a
closed form. In [6], the authors propose a transmit covariance
optimization method to maximize the energy efficiency for a
single-user DAS.

In contrast to user-centric virtual cell networks, these related
works either ignore how to choose the optimal base station
set or only concern a single-user systems which indicates that
there is no inter-user interference and make the optimization
problem simple and tractable. The cell formation schemes in
virtual cell networks are completely different, since each user
can choose its serving RRH set to form a virtual cell [7]. In
this way, there is no cell edge any more, and the performance
of each user can be greatly improved by deploying more RRHs
into each virtual cell.

The cell formation scheme and downlink precoding tech-
nology are the vital parts in virtual cell networks. The former
determines a set of RRHs that will serve the same UEs, while
the latter one effectively eliminates the inter-user interference,
both can significantly improve user experience. However, to
the best of the authors knowledge, few existing papers focus
on cell formation schemes. Regarding downlink precoding, a
new formulation of the beamforming problem is developed in
[8] for sum-rate maximization and the structure of its optimal
solution is analyzed.

In this paper, we take both cell formation schemes and
precoder design into consideration and solve the two problems
separately. Firstly, we introduce two virtual cell formation
methods with different setting of cell size in user-centric
virtual cell networks. Secondly, in order to solve the precoding
problem, we formulate the popular weighted sum-rate maxi-
mization problem and prove that it is equivalent to a matrix-
weighted sum mean square error (S-MSE) minimization prob-
lem. Then we develop a distributed weighted minimum mean
square error (WMMSE) precoding algorithm for the user-
centric virtual cell networks, the performance of which is
validated by numerical results.

The rest of this paper is organized as follows. In Section II,
we present the system model and two cell formation methods
are introduced. In section III, we propose the distributed
WMMSE precoding algorithm. Numerical results are given
in Section IV and conclusions are drawn in Section V.

Notation: Uppercase and lowercase boldface denote ma-
trices and vectors, respectively. For a matrix A, [A]i,: and
[A]i,j mean the i-th row of A and the (i, j)-th element of
A, respectively. (·)T, (·)H and tr(·) denote transpose, Hermi-
tian transpose and trace operator, respectively. Expectation is
denoted by E[·]; ∥A∥F and |A| (or det(·)) are the Frobenius
norm of A and its determinant. IN is the N × N identity
matrix; CN (a,A) is a complex Gaussian vector with mean a
and covariance matrix A.

II. SYSTEM MODEL AND CELL FORMATION

In this section, we introduce the system model considered
in this paper as well as the methods used for virtual cell
formation.
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A. System model

We consider the downlink of a virtual cell network with
universal frequency reuse and all the users are scheduled at
the same time. The virtual cell network consists of a set of
M RRHs denoted as M and a set of K UEs denoted as K,
such that |M| = M , |K| = K, where operation | · | represents
the cardinal number of a set. Each RRH and UE are equipped
with NT and NR antennas, respectively.

The set of RRHs serving a specific UE is defined as a virtual
cell. Denote Mk ⊆ M and Km ⊆ K as the active RRH cluster
for UE k and the set of UEs whose virtual cell is formed
by RRH m, respectively. Note that the remaining unselected
RRHs can be turned off to reduce the power consumption.
For the user-centric networks, multiple UEs have diverse rate
requirements and channel conditions, which inevitably leads
to overlapped virtual cells, i.e., ∀k, k′ ∈ K and k ̸= k′, Mk ∩
Mk′ ̸= ∅. In the rest of paper, we denote |Mk| = Mk, ∀k ∈ K
and the total number of transmit antennas for UE k as Nk

T .
The channel matrix from RRH m to UE k is denoted by

Hm,k ∈ CNR×NT , the i-th row of which is given by

[Hm,k]i,: = [αmki,1, αmki,2, · · · , αmki,NT
]
√
ρmk,

where αmki,n ∈ CN (0, 1), n = 1, 2, . . . , NT is the Rayleigh
fading channel coefficient and ρmk is a large-scale fading (e.g.,
path loss and shadowing) from RRH m to UE k.

The received signal at UE k is given by

yk = Hk-kFkxk +
∑

j ̸=k,j∈K

Hj-kFjxj + nk. (1)

where xk ∈ CNs is the transmitted symbol vector of UE k
with zero-mean and E[xkxH

k ] =
1
Ns

INs .

Hj-k =[Hm1,k,Hm2,k, · · · ,HmMj
,k] ∈ CNR×Nj

T ,

Fj =[FT
m1,j ,F

T
m2,j , · · · ,F

T
mMj

,j ]
T ∈ CNj

T×Ns , (2)

where mi ∈ Mj . Fm,k ∈ CNT×Ns is the precoding matrix for
user k at RRH m; nk ∈ CNR×1 is the additive white Gaussian
noise with zero-mean and covariance E[nkn

H
k ] = σ2

kINR . We
assume that xk and xj (nk and nj) are independent if k ̸= j.

Then the data rate of UE k is

Rk = log2 det(INR
+ Γk), (3)

where
Γk = Hk-kFkF

H
k H

H
k-kZ

−1
k ,

and Zk =
∑

j ̸=k,j∈K Hj-kFjF
H
j H

H
j-k +Nsσ

2
kINR

.
In this paper, we adopt linear decoder at user terminals so

that the post-processed signal is given by

x̂k = PH
k yk,

where Pk ∈ CNR×Ns is decoding matrix for UE k.
The interest of this paper is to find the transmit and decoding

matrix Fk and Pk such that a certain utility of the virtual cell

networks (e.g., minimizing the sum MSE) is optimized with
the following power constraint for each RRH is met:∑

k∈Km

tr(Fm,kF
H
m,k) ≤ Pmax, ∀m = 1, · · · ,M

where Pmax is the maximum available power for each RRH.
According to the structure of Fk in (2), we can relax the above
power budget to

tr(FkF
H
k ) ≤ MkPmax,∀k = 1, · · · ,K (4)

B. Virtual Cell Formation

The virtual cell is formed from a user’s perspective. UE
k feeds back the channel matrix of |Mk| RRHs with the
strongest channel gains to form its serving RRH set Mk.
We define the size of virtual cell to be the number of RRHs
which serve the user. Similar to [3] and motivated by [9], we
introduce two forming approaches with different settings of
cell size:

1) Maximum Gain Forming (MGF). The RRH set Mk for
user k is formed by Mk RRHs with strongest channel
gains. An example of a virtual cell scenario is given in
Fig.1, where cell size is fixed to 3.

2) Threshold Forming (TF). This scheme depends on the
relative channel gain, as summarized in Table I. The
RRH set for user k can be expressed as

Mk =

{
m
∣∣∣ ∥Hm,k∥2F
max{∥Hm′,k∥2F}m′∈M

≥ βk,m ∈ M
}
,

(5)
where 0 < βk ≤ 1 is the threshold of relative channel
strength, which is defined as the ratio of the squared
Frobenius norm of Hm,k to that of the strongest chan-
nel. Obviously, it is of great importance to choose an
appropriate threshold βk for system performance and
interference elimination. Specifically, if βk is too small,
it will result in large cell size for UE k which requires
more RRHs to cooperate with each other leading to high
signaling overhead and severe inter-cell interference to
other UEs. On the other hand, when βk is too large,
there may be only one RRH serving this UE (i.e., no
RRH coordination).

In Fig.1, it is reasonable that some user equipments should
not choose the nearest three RRHs for cooperative communi-
cation, because of different shadow fading and path loss.

For TF scheme, the RRHs with strongest channels is vari-
able for each user because the channel is random. Moreover,
the cell size may change dynamically according to threshold
βk. Therefore, TF may achieve results different from MGF.
The computational complexity of TF scheme in Table I is
dominated by searching the maximum. Thus, the complexity
is O(KM).

It is hard to acquire an appropriate threshold βk, be-
cause of non-closed expression of βk. To solve the threshold
choice problem and obtain a near-optimal threshold β =
{β1, · · · , βK}, we formulate it into a performance maximiza-
tion problem and propose a simple yet effective method called
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Fig. 1. A snapshot of link geometry for User-Centric Virtual Cell Network.
The line represents that the communication connection between UE and RRH,
and different colors indicate different virtual cells. 25 RRHs and 10 UEs are
distributed in the square region. The virtual cell formulation scheme is MGF,
where |Mk| = Mk = 3.

TABLE I
TF SCHEME

STEPS OPERATIONS
1 Generate channel matrix Hm,k(m ∈ M, k ∈ K) according

to their locations;
2 For each UE(k ∈ K)

Val = arg maxm∈M{∥Hm,k∥2H};
Mk = ∅;
While ∥Hm∗,k∥2F/Val ≥ βk , m∗ ∈ M

Let M = M\{m∗}, Mk = Mk
∪
{m∗};

End
End

K-dimensional grid search, which will be introduced in future
work. Obviously, the K-dimensional grid search can be very
complex for large values of K.

III. PRECODING FOR WEIGHTED SUM RATE
MAXIMIZATION

In this section, we devise a precoding scheme in order to
maximize the weighted sum-rate assuming MGF scheme is
used for virtual cell formation. We set up a weighted sum-rate
maximization problem and design the precoders by converting
the original problem to an equivalent matrix-weighted S-MSE
minimization problem.

Let F , {Fk|k ∈ K}, and then the weighted sum rate
maximization problem can be formulated as

F∗ =arg max
F

K∑
k=1

αkRk

s.t. (4)

(6)

in which the weight αk represents the priority of UE k in the
whole network and Rk is the data rate of UE k which is given
in (3).

Obviously, the optimization problem of (6) is non-convex
and thus difficult to find the global optimal solution. Therefore,
we need to convert it to an equivalent form which is tractable.

A. Equivalent Matrix-weighted Sum-MSE Minimization Prob-
lem

In order to solve (6), let us first examine the MSE matrix
Ek for UE k, which is given by

Ek = Ex,n

[
(x̂k − xk)(x̂k − xk)

H
]

=
1

Ns
(I−PH

k Hk-kFk)(I−PH
k Hk-kFk)

H

+
1

Ns

∑
j ̸=k,j∈K

PH
k Hj-kFjF

H
j H

H
j-kPk + σ2

kP
H
k Pk, (7)

where the expectation is taken over x and n. Then the S-MSE
minimization problem can be formulated as

{F∗,P∗} =arg min
F,P

K∑
k=1

tr(Ek)

s.t. (4), (8)

where P , {Pk|k ∈ K} is the combined decoding matrix.
Given F, the minimization problem (8) leads to a MMSE

receiver, i.e., ∂tr(Ek)/∂Pk = 0, which gives

Pmmse
k = U−1

k Hk-kFk, (9)

where Uk =
∑

j∈K Hj-kFjF
H
j H

H
j-k + Nsσ

2
kINR is the co-

variance matrix of the total received signal and additive noise
at UE k. Using the above MMSE receiver, the corresponding
MSE matrix can be deduced to

Emmse
k

(a)
= Ex,n

[
− (x̂k − xk)x

H
k

]
=

1

Ns

(
I− FH

k H
H
k-kU

−1
k Hk-kFk

)
, (10)

where (a) follows from independence between the detection
error and detection result of MMSE.

To this end, we are able to convert the original sum-rate
maximization problem (6) to the following matrix-weighted
S-MSE minimization problem:

min
F,P,W

K∑
k=1

αk

(
tr(NsWkEk)− logdet(Wk)

)
s.t. (4) (11)

where Wk ≽ 0 is a weight matrix for UE k and W ,
{Wk|k ∈ K}.

Proposition 1: Problem (11) is equivalent to (6).
Proof: It is obvious that Pmmse

k in formula (9) is the
optimal solution of problem (11). Let f(Fk,Pk,Wk) be
the objective function in problem (11). Then, f is con-
vex w.r.t. Wk when all the other variables are fixed. By
checking the first order optimality condition for Wk, i.e.,
∂f(Fk,Pk,Wk)/Wk = 0, we obtain Wopt

k = (NsEk)
−1.

Substituting optimal Pk and Wk into (11) gives

max
F

K∑
k=1

αklogdet
(
(NsE

mmse
k )−1

)
s.t. (4) (12)
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Next, we only need to prove that logdet
(
(NsE

mmse
k )−1

)
= Rk.

logdet
(
(NsE

mmse
k )−1

) (a)
= logdet

(
I− FH

k H
H
k-kU

−1
k Hk-kFk

)
(b)
= logdet

(
I+ FH

k H
H
k-kZ

−1
k Hk-kFk

)
(c)
= logdet

(
I+Hk-kFkF

H
k H

H
k-kZ

−1
k

)
= Rk

where (a) and (b) are achieved from (10) and using the
Woodbury matrix identity, respectively. Here Zk is given in
(3) and (c) follows the fact that det(I+AB) = det(I+BA).

Proposition 1 shows that maximizing sum-rate utility can
be solved via matrix-weighted S-MSE minimization. Although
the latter problem has more variables, it is tractable since the
objective is convex on each variable.

B. Distributed WMMSE Algorithm

In this subsection, we introduce a weighted mean square
error (WMMSE) algorithm [10] for matrix-weighted S-MSE
minimization problem. To solve problem (11), the block
coordinate descent method is used. Specifically, we minimize
the objective by iteratively update one variable while fixing
two other variables.

Denote F(n), W(n) and P(n) as the outputs of the n-th
iteration. Then P

(n+1)
k , Fn+1

k and Wn+1
k are computed for

each user k in a distributed way.
P

(n+1)
k is calculated according to the MMSE solution in

(9). Regarding Wn+1
k , we have proved in Proposition 1 that

the optimal solution is

W
(n+1)
k = (NsEk)

−1, (13)

where Ek is given in (7). To calculate Fk, the problem (11)
can be rewritten as

min
Fk

Ak +Bk

s.t. tr(FkF
H
k ) ≤ MkPmax (14)

where

Ak = tr
(
αkWk(I−PH

k Hk-kFk)(I−PH
k Hk-kFk)

H
)
,

Bk =
∑

j ̸=k,j∈K

tr
(
αjWjP

H
j Hj-kFkF

H
k H

H
j-kPj

)
.

The above problem is a convex quadratic optimization prob-
lem on Fk, which can be solved by using standard convex
programming tools.

From the implementation point of view, some reasonable
assumptions were made to implement the distributed WMMSE
algorithm [11]. We assume that local channel information can
be available for each user, in other word, each RRH m knows
the local channel matrix Hm,k to UE k. We also assume that
each UE can feedback information (e.g., the updated decoding
matrix Pk) to the RRHs.

Specifically, the central controller predetermines the RRH
set for each user, i.e., Mk,∀k ∈ K and the users served by

RRH m, i.e., Km, and these information will be delivered
to all users. Then, each user estimates the received signal
covariance matrix Uk and calculate corresponding weight
matrix Wk and decoding matrix Pk. At last, users feed back
these information to the RRHs which will be handled by
central controller. Therefore, this algorithm runs distributedly
for each virtual cell. It should also be noted that the maximum
iteration number Nmax should be large in order to reduce the
power consumption of user equipments.

The WMMSE precoding algorithm for user-Centric virtual
Cell Networks is summarized in Algorithm 1.

Algorithm 1 Distributed WMMSE Algorithm
1: The iteration number n = 1;
2: Initialize precoding matrix F

(n)
m,k,m ∈ Mk, k ∈ K

such that tr(F(n)
m,k(F

H
m,k))

(n)) = Pm/Km, and form F
(n)
k

according to (2);
3: for k = 1, 2, · · · ,K do
4: W′

k
(n)

= W
(n)
k ;

5: P
(n)
k = (U−1

k )(n)H
(n)
k-kF

(n)
k , according to (9);

6: W
(n)
k = (NsE

mmse
k )−1, according to (10) and (13);

7: Update F
(n)
k , according to standard convex program-

ming tools;
8: end for
9: If

∣∣∑
k∈K

(
logdet(W(n)

k )− logdet(W′
k
(n)

)
)∣∣ < ϵ or n >

Nmax, terminate. Otherwise, set n = n+1 and go to step
2.

Due to the distributed manner, the proposed algorithm
requires less signaling exchange within the network. Ac-
cording to a similar complexity analysis in [10], the com-
plexity of the WMMSE algorithm is O(NmaxK

2NTN
2
R +

NmaxK
2N2

TNR+NmaxK
2N3

T +NmaxKN3
R). It is reasonable

to assume that NT ≫ NR and the complexity is thus given
by O(NmaxK

2N3
T ).

IV. SIMULATION RESULTS

In the simulations, we use the topology shown in Fig.1,
where the length of the square is 4000 meters and all RRHs are
uniformly placed while the users are uniformly and randomly
generated. Each RRH has 23 dBm power budget and 4
antennas, while each UE has only one antenna. For a fair
comparison with [8], we adopt the same parameters by setting
Ns = 1 and system bandwidth to be 5 MHz. The standard
deviation of shadowing is 8 dB and the pass loss is given by
d−α, where α = 3.76 and d is the distance from RRH to UE
in kilometer. We assume σ2

k = −174 dBm/Hz and the weight
of each user is equal to 1. For algorithm implementation, we
use ϵ = 10−5 and Nmax = 2 [10].

To evaluate the performance of WMMSE algorithm
(Algorithm 1), we compare it with two existing algorithms:

• EigPre: Eigenprecoding with fixed power allocation [8].
• ZF: Zero-forcing precoding with total power constraints

[12]–[14].
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Fig. 2. System capacity comparison of different precoding algorithms. Soild
lines represent the virtual cell size is 2, while dashed lines mean virtual cell
size is 1 (i.e., no RRH coordination).

Fig.2 shows the comparison between WMMSE and EigPre,
ZF in terms of system capacity. It can be seen that the
WMMSE algorithm achieves much higher capacity than the
two existing algorithms under different virtual cell size. In ad-
dition, the performance of EigPre and ZF increase marginally
with virtual cell size, while the WMMSE algorithm shows
a substantial gain. This result shows that merely adopting
RRH coordination in virtual cell without delicate precoding
algorithms may not improve the system performance. It also
should be noted that when the size of the area becomes
large, increasing cell size (i.e., RRH coordination) can barely
improve system capacity.

In Fig.3, we compare the implementation time with the
two existing algorithms. The simulations were operated in
MATLAB R2014a on a computer with 3.2 GHz Intel Core i5
processor. Although the CPU time not totally represents the
actual computation speed, it can be a metric for performance
comparison. It can be observed that the WMMSE algorithm
significantly outperform EigPre algorithm especially when the
number of users is large and slightly inferior to ZF algorithm.

V. CONCLUSION

In this paper, we study the precoding problem for maxi-
mizing weighted sum-rate in user-centric virtual cell networks,
and introduce two virtual cell formation methods with different
setting of cell size. We reformulate the popular weighted sum-
rate maximization problem into an equivalent matrix-weighted
sum-MSE minimization problem, based on which we solved
the precoding problem and developed a distributed WMMSE
algorithm. Simulation results show that the WMMSE algorith-
m outperforms the two existing algorithms in terms of system
capacity and the implementation time is modest in various
system environments.
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