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ABSTRACT
The paper addresses the problem of monitoring a non-

stationary online process to detect an abrupt failure. The

process studied in this paper is the one of wheels coating,

but the proposed method can be extended to a broad range

of processes. Using a camera, a picture of every wheel is

captured for traceability. This image is used, in our problem,

to measure the coating intensity via pixels mean value. In

our operational context, it is wished to control the false alarm

probability over a long period (typically a day) as well as to

keep the detection delay under a given number of observa-

tions, which corresponds to a small number of wheels with

defective coating. The problem of abrupt coating problem

detection is addressed using a sequential method that takes

into account those two requirements while it is also able to

adapt to the non-stationnarity of the process. Numerical re-

sults on a large set of wheels images show the efficiency of

the proposed approach.

Index Terms— Industrial monitoring systems, Hypothe-

sis testing theory, Sequential detection, Parametric model.

1. INTRODUCTION

In recent years, the change-point detection topic has been re-

ceiving increasing attention in various domains. It addresses

the problem of detecting the point or multiple points at which

a “significant change” occurs in a time series. These points

are referred to as change points. The change-point detection

process must be able to distinguish between a “significant

change” indicating an abnormal event, and an “insignificant

change” due to noise and that indicates a predicted or a nor-

mal behavior of data. Distinguishing change points from

spurious noise is very important in order to keep a false alarm

rate. However, surprisingly sequential methods are hardly

provided with established, or bounded, false-alarm probabil-

ity and power function.

In general, change-point detection methods can be classi-

fied into “posteriori” and “sequential” methods. The choice
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of the appropriate class of methods depends heavily on the

application.

“Posteriori” methods, also referred to as offline or retro-

spective methods, are considered in many applications, such

as climate change detection [1], biological applications [2]

and analysis of social media [3], to cite few topics. This type

of method is used after the reception of data with the goal to

detect all the change points along and estimate their locations

while not taking any corrective actions.

On the opposite, many other applications analyze data in real

time with the goal to take an immediate response as soon as

a change in data is detected, as it can reveal a system failure

which must be handled. Such context falls within the problem

of “sequential” methods, also referred to as online or real-time

methods, in which it is assumed that the data is received se-

quentially, and that until a change point is detected the process

is allowed to continue. Contrariwise, when the data changes

it is aimed at detecting the change point with minimal delay

time, in order to take the relevant actions, while also preserv-

ing a low false-alarm. Obviously, minimizing the detection

delay and the false-alarm rate are contradictory goals. This

type of method has been especially attracting attention from

the industrial world, in which the term control chart is widely

used, for quality control applications [4, 5, 6].

“Sequential” change-point detection methods can be fur-

ther categorized into the “parametric” and “non-parametric”

methods.

On the one hand, “non-parametric” or data-driven methods

have the advantages not to require any assumptions or any

model on the data. They are based on statistical methods,

especially supervised or non-supervised learning, to build de-

tection rules based on large set of observations. Such decision

rules are then applied to new data. While not requiring any

model on the observations, those methods may, however, be

limited, typically when the manufacturing process can widely

change, and they are hardly provided with known statistical

performances.

On the other hand, “parametric” methods are used when a

sufficient information on the monitoring process is available

such that a statistical model of the observation can be de-

signed.

In other words, this approach requires that some distribu-
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tional knowledge of the data is available and employed into

the detection scheme. A common limitation of these methods

is that they rely on pre-specified parametric models, and based

on a priori information about the form of data distribution.

The present paper falls within the scope of parametric se-

quential with the goal monitoring wheels paint coating pro-

cess in real time in order to detect an abrupt change. In fact

the coating may fail because of lack of paint or blocked spray

nozzle. In this operational context, the maximal detection de-

lay (number of wheels with coating defect) is set and it is

wished to control the false-alarm probability over a fixed run

length (typically a day).

The present paper is organized as follows. Section 2

presents the problem of paint coating intensity variation on

produced wheels. Section 3 recalls the well-known cumula-

tive sum (CUSUM) procedure [7] and presents the proposed

linear parametric model to deal with the observations’ non-

stationnarity. The hypothesis test and the decision rule of the

proposed method are also presented in Section 3. Section 4

presents numerical results obtained on a wide range of real

images and studies the performance of the proposed method.

Finally, Section 5 concludes the paper.

2. PAINT COATING INTENSITY

Wheel paint has two purposes; to protect the underlying metal

from the harsh environment to which it is exposed, and most

importantly to improve the look of wheels. Modern wheel

coating methods consist of five main steps, starting with the

pretreatment which removes and cleans excess metal to form

a smooth surface structure, and ending with the topcoats

which provide surface properties including color, appear-

ance, gloss, smoothness, and weather resistance [8]. This

paper focuses on the topcoats as they are the only visible

layer.

Wheel topcoats are usually composed of several layers of

paint coatings, with a precise thickness, spread on the whole

surface of the wheel one after another [9].The appearance

(color, gloss, texture, etc. . . .) of a coated surface greatly af-

fects perception on the product quality. Customers’ specifica-

tions on wheels appearance are hence important and any de-

viation from those specifications must be detected. However,

it is important to note that in this context a defective process

will not only affect one wheel, but all of the following prod-

ucts. Therefore, a fast and accurate detection of any anomaly,

as soon as it appears, is necessary in order to reduce the num-

ber of defective products, thus reducing the loss. Moreover,

small deviations in the coating intensity is likely to remain

unnoticed by the visual inspection.

This lead us to the necessity of an automatic inspection sys-

tem that monitors the variations of the topcoat intensity, and

signal the change point with minimal delay time. The detec-

tion process has to be fast and sufficiently efficient in order to

distinguish between a normal state and the anomalous state.

Fig. 1: An example of a wheel image

Technically speaking, many factors influence the quality

of the coating, thus its appearance, such as temperature, paint

viscosity, solvents, etc. [8, 9] . . . . This paper focuses on a

usual problem, that is when the spray gun nozzle partially

clogs, or gets blocked, which will be translated in a sudden

change in the intensity of the topcoats.

The monitoring system consists of an imaging system

placed over the conveyor belt, just after the painting pro-

cess. It involves a camera that takes the image of each pro-

duced wheel, using a proper illumination setup to uniformly

brighten the whole surface of the wheel while reducing light

reflection artifacts. An example of a wheel image acquired

by the imaging system is shown in Figure 1.

The proposed method relies on a window in the image

of the wheel, over which the mean value of all pixels is com-

puted. For one image of a wheel, let Z = {zw}�w=1 denote the

window containing � pixels and m = �−1
∑�

w=1 zw the mean

value of pixels intensity. The variation of the mean value m
describes the variation of the topcoat intensity. Indeed, the

mean value is a sufficient parameter to detect coating failure

as the change in pixel values that it causes affects the whole

surface of the wheel. Figure 4 shows an example of series

of mean pixels value mi, with i the image index. Consider-

ing the first 1, 000 images, the observed variation in the mean

values is considered to be normal, and it is due to the reasons

detailed previously. It is shown that the mean value of obser-

vations mi evolves smoothly, before or after the change. It is

important to note that the variations of pixels mean is only due

to the acquisition system, such as the wheel position and il-

lumination. Based on knowledge on manufacturing processes

and on observations, as illustrated in Figure 4, the process can

be considered as a non-stationary process in the mean with a

constant variance.

3. SEQUENTIAL DETECTION

3.1. Problem Formulation

This section formally states the problem of abrupt change-

point detection before presenting the proposed linear model

of observations and the ensuing detection method.

The sequential change-point detection problem can be formu-

lated as follows. Let us consider {Xn}n≥1 a sequence of in-
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dependent and identically distributed (i.i.d) observations that

is acquired sequentially. At the beginning, the sequence is

considered at a normal state, and the observations follow a

probability distribution Fθ0(x). Then, at an unknown point

v ≥ 0 (the change point), the sequence reaches an abnormal

state, in which the observations follow a different probability

distribution Fθ1(x). The problem formulation can be rewrit-

ten as follows:

Xn ∼
{
Fθ0(x) if 1 ≤ n ≤ v,

Fθ1(x) if n ≥ v + 1,

The sequential change-point detection consists of detecting

the change point v as soon as it occurs, while at the same time

preserving a low false alarm rate.

For the online continuous inspection, for each new observa-

tion received, a decision rule is computed to test between the

two following hypotheses:{
H0 : {θ = θ0},
H1 : {θ = θ1},

(1)

As long as the test (also called stopping rule) fails to reject

H0, the data acquisition continues. When the observations xi

are statistically independent, a usual approach to decide be-

tween the hypothesesH0 andH1 is to use the cumulative sum

(CUSUM) procedure which can be defined, for observations

up to N as follows [7]:

δN =

{
0 if SN

1 = max(SN−1
1 + sN − λ; 0) < τ,

1 if SN
1 = max(SN−1

1 + sN − λ; 0) ≥ τ,

(2)

where λ is a constant that avoid spurious false-alarm, τ is a

conveniently predefined threshold and, for initialization S0
1 =

0. Though the decision statistics sN and the constant λ were

not defined in [7], the logarithm of the well-known likelihood

ratio is commonly used:

si = log

(
pθ1(xi)

pθ0(xi)

)
, (3)

where p is the probability density function (PDF), which is

assumed to be known, and the constant λ is usually the av-

erage of the expected values λ = 1/2 (EH0 + EH1). In the

present paper, one of the most challenging problem is that

the PDFs under H0 and H1 are unknown. In fact, as men-

tioned in Section 2, the variation of the paint coat intensity on

wheels’ surface is a non-stationary process in the mean, with

a constant variance. Because the mean changes smoothly, it

is proposed in the present paper to estimate it with a para-

metric linear model. In addition, in our operational context,

the detection must remain below a given maximal number of

defective wheels. Therefore a novel two fixed windows se-

quential procedure (2FW-SEQ) is proposed in this paper; the

linear model parameters are estimated over the first window,

and the second window is the one used for the sequential de-

tection procedure.

3.2. Paint Coat Intensity Model

Let us consider a sliding window of size L. After the first

L observations, for each new received data mN , the window

slides by one point to contain the observations from mN−L+1

to mN . Let YN = (mN−L+1, . . . ,mN−1,mN )T denotes this

window after the reception of observation mN . The vector

YN is modeled with the following normal distribution:

YN ∼ N (μN , σ2IL), (4)

where μN is the expectation in this window, IL is the iden-

tity matrix of size L, and σ2 is the variance which is assumed

constant for all windows YN , ∀N ≥ L.

A linear parametric model is proposed to represent the ex-

pectation μN . It essentially consists in representing all the

observations in the window YN as a weighted sum of q basis

vectors that represent the columns of a matrix H of size L×q.

The weight of this sum represents the vector of q parameters

dN . Hence, the expectation μN can be written as:

μN = HdN . (5)

In this paper, the model of H is based on the following alge-

braic polynomial:

h(x) =

q−1∑
j=0

djx
j , (6)

with q − 1 the degree of the polynomial.

It thus follows from Eqs. (4) and (5) that when no anomaly

is present the vector of observations YN is modeled by:

YN ∼ N (HdN ,σ2IL). (7)

On the opposite, when a defect happens in the coating

process, a change occurs in the mean value which will affect

all observations after the change point. Consequently, when

the change occurs, the observations YN can be modeled as:

YN ∼ N (HdN + aKM ,σ2IL), (8)

where the sudden shift in mean value is described by the vec-

tor KM , of size L, containing L−M zeros before the change

occurs and minus ones M times after, and the constant a > 0
represents the amplitude of the change. Here, M is the num-

ber of maximal acceptable wheels with defects. For example,

the change vector K1 = (0, 0, ..., 0,−1) describes a change

that only affects the last observation in the window of size L.

It is important to note that the “acceptable” variation of

mean value, modeled by HdN , is a nuisance parameter as it is

of no use for the considered detection problem. To deal with

this nuisance parameter, it is proposed to use the maximum

likelihood (ML) estimation method to perform a rejection of

this nuisance parameter as follows:

rN =
1

σ
WYN . (9)
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Here W is the orthogonal projection of size L−q×L, onto the

null space of H whose vectors corresponds to the eigenvec-

tors of matrix IL−H
(
HTH

)−1
HT associated with eigen-

values equal to 1. The vector rN represents the projection of

the observations onto the null space of H.

3.3. 2FW-SEQ procedure

Among others, the matrix W has the following useful proper-

ties: WWT = IL−q ; it thus follows from Eqs. (7)-(9), that

the residuals rN can be modeled under hypotheses H0 and

H1 by the following statistical distribution:{H0 : {rN ∼ N (0, IL−q)}
H1 :

{
rN ∼ N

( a

σ
θM , IL−q

)}
,

(10)

where θM represents the shift of expectation, due to coating

failure, projected onto the null space of H: θM = WKM .

From definition of hypotheses (10), after rejection of nui-

sance parameter HdN , it is obvious that the problem of de-

tection considered essentially consists in detection of signal

in noise. Similar approaches have been studied in the context

of sequential detection in [10, 11]. They proposed to use the

well-known match space detection which is given in our case

by:

δN =

{
0 if S̃N

N−L+1 = θT
MrN < τ

1 if S̃N
N−L+1 = θT

MrN ≥ τ.
(11)

From Eq. (10) it is straightforward to establish the statistical

distribution of result S̃N
N−L+1 of the proposed 2FW-SEQ:⎧⎨⎩H0 :

{
S̃N
N−L+1 ∼ N (0, ‖θM‖22)

}
H1 :

{
S̃N
N−L+1 ∼ N

( a

σ
‖θM‖22, ‖θM‖22

)}
.

(12)

Equation (12) emphasizes the main advantages of the pro-

posed approach. In fact, two important criteria can be used

to highlight the performance of a sequential method; the false

alarm probability, denoted α, and the detection power, de-

noted β. For a prescribed run length, the false alarm prob-

ability depends on the given detection delay, and β depends

on the “change-to-noise ratio” a/σ and on the detection delay

M .

It is important to note that the choice of L is crucial and

must meet the following trade-off: first, L must be much

greater than M in order to avoid the estimate of linear model

parameters dN to be impacted significantly by the abrupt

change. On the opposite, L must remain reasonably small

such that the linear model will well model the observations’

expectation and to ensure that the residuals rN follow a stan-

dard normal distribution underH0.

4. EXPERIMENTS AND RESULTS

Following the constraints on the parameters L and q, mul-

tiple simulations performed on a data base of 500 000 non-

anomalous observations (without change point) have led to

the choice of L = 150 and q = 3, for which the empirical

distribution of the normalized residuals rn shows good results

compared to the theoretical one (10) in Figure 2. These sim-

ulations also helped to assure that the standard deviation has

a constant value σ = 22 over all the observations.

Then, it is proposed to study the effect of the second win-

dow length M on the detection performances. The same data

base has been used to perform a Monte-Carlo simulation, for

which a simulated shift of amplitude a = 60 has been su-

perimposed on some of the observations. Figure 3 repre-

sents the empirical false alarm probability α and detection

power β over a run length K = 5000 for 3 different values

of M = {1, 3, 5}, as a function of the decision threshold τ .

When M increases, ‖θM‖2 increases, which affects both the

false alarm rate and detection power, as seen in (12). The shift

between the detection power and the false alarm probability

becomes larger which implies a better detection performance,

but at a larger delay M . Depending on the application, this

test allows to increase the detection power at a cost of larger

detection delay, or minimize the detection delay at a cost of

lower detection power.

Finally, it is wished to test the proposed sequential de-

tection method 2FW-SEQ on a real case scenario with a real

change point in the observations. Figure 4 portrays a real

case of observations when the spray gun nozzle got partially

clogged. As a consequence, a sudden shift in the observa-

tions can be seen at exactly the image index 2434. The blue

plot represents the real observations, while the red plot repre-

sents the expectation values (5) estimated using the polyno-

mial model over a window of size L = 150 and a degree of

q − 1 = 2. Then, Figure 5 illustrates the results of the pro-

posed 2FW-SEQ method with M = 1 and τ = 3.6. It can be

seen that the change point is detected at the index 2434 which

means a delay of exactly 1 wheel.

Usually, when the change is detected, the sequential process

stops. However, to the purpose of comparing this result with

the theoretical one (12), all the results after the change has

been performed on a window of size L that consists of the last

L − M observations before the change along with the new

observation as the Lth member. Before the change, the re-

sults show a Gaussian behavior with zero mean and a variance

‖θM‖22 = 0.94. However, after the change, the mean value

undergoes a shift of a
σ‖θM‖22 with a = 55 and σ = 22. The

empirical results S̃i
i−L+1 before and after the change proved

to be consisting with their theoretical distributions (12).

5. CONCLUSION

This paper proposes a method for online monitoring of a non-

stationary process. The CUSUM method is modified to adapt

to the operational requirements of the industrial context in

order to control the false-alarm probability over a fixed run

length and for a given detection delay. For the coating pro-
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cess studied in this paper, the mean value of pixels from im-

ages of wheels are used to measure the coating intensity. As

the monitoring process is non-stationary in the mean, a linear

parametric model is proposed to reject this nuisance parame-

ter. Numerical results on a large set of images show the accu-

racy of the proposed model and the efficiency of the proposed

detection method.
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