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Abstract—In modern wireless networks autonomous agents
may exhibit selfish or malicious behavior which can compromise
the performance of the network. For this reason, Intrusion
Detection Systems (IDS) have been proposed to monitor the
agents’ behavior, along with the deployment of Trust/reputation
Management Systems (TMS) to enforce cooperation among the
agents. IDS may not continuously monitor agents’ behavior
to avoid excessive deployment costs. In this work we consider
agents that exhibit both selfish and malicious behavior and study
their pairwise interactions when they participate in a packet–
forwarding task, in the scenario of partial monitoring of their
actions by the IDS. We investigate the decision–making process of
the agents and derive conditions that if satisfied, the trust–based
strategy proposed by the TMS constitutes an optimal strategy
for the agents.

Index Terms—Trust; Game Theory; Monitoring; Cooperation.

I. INTRODUCTION

In modern wireless networks, autonomous agents, that do
not necessarily belong to the same authority, interact to pursue
individual goals. In order for these networks to work effi-
ciently, agents must cooperate and forward packets to intended
destinations. However, it is unrealistic to take for granted
that agents will always cooperate in an altruistic fashion.
The main types of “misbehavior” are selfish and malicious
behavior. Selfish agents are interested in receiving cooperation
benefits from others while contributing as little as possible to
the forwarding task to reduce transmission cost. In contrast,
malicious agents aim at harming other agents by launching
various kinds of attacks such as packet/content modification,
Byzantine and Sybil attacks, amongst others.

Game Theory (GT) has been widely utilized for studying
interactions among autonomous self-interested agents partici-
pating in a packet–forwarding task in wireless networks [1],
[2], [5]. It is shown in [5] that network–wide cooperation
among autonomous self-interested is unlikely to occur without
providing incentives. For this reason, trust/reputation models
[1]–[4] have been proposed to stimulate cooperation. In [4]
the watchdog mechanism monitors the agents’ misbehavior,
while the pathrater mechanism selects routes consisting of
trustworthy nodes. In [2], [3] reputation systems based on the
indirect reciprocity principle are designed.

A Trust Management System (TMS) categorizes agents into
trustworthy and untrustworthy based on their behavior. Apart

from updating agents’ trust values, an effective TMS aims at
enforcing a desired behavior pattern. This behavior helps the
trustworthy agents and ignores the untrustworthy ones.

Agents’ actions are usually assumed to be observable. An
exception is [1] which considers interactions among selfish
agents and an agent’s packet forwarding action may be per-
ceived by another agent as packet drop due to not overhearing
the transmission. The monitoring mechanisms deployed for de-
tecting agents’ actions and especially misbehavior patterns are
called Intrusion Detection Systems (IDS). The most commonly
used IDS technique is overhearing an agent’s transmissions
[1], [4], [8]. However, low energy budget networks, such
as WSNs, may employ partial monitoring IDS schemes that
periodically sample the agents’ packets to decide on their
behavior as discussed in [9].

In this paper, we consider agents that can act both selfishly
by not forwarding others’ packets and maliciously by launch-
ing packet modification attacks, a subject less considered in the
literature. We assume that an IDS performs overhearing peri-
odically and then based on the IDS action detection outcome,
the TMS updates the agents’ trust values. We then study the
impact of the sampling probability of the IDS along with the
properties of the TMS on the decision–making process of the
agents. We highlight the implications in the analysis caused by
considering malicious behavior and study the effectiveness and
limitations of trust–based strategies when the agents condition
their actions on the publicly observed trust values. Finally, we
derive conditions that if satisfied an agent is incentivized to
follow a desired strategy which is beneficial for the network,
despite its myopic temptation to misbehave. In doing so, we
formulate the agents interactions as a Stochastic Game (SG)
and the solution concept of Perfect Public Equilibrium (PPE)
is utilized.

The rest of the paper is organized as follows. Section II
outlines the system model and the trust update mechanism.
The decision making process is analyzed in Section III. The
results are discussed in Section IV while conclusions are given
in section V.

II. SYSTEM MODEL

A. Agents’ interactions and modeling

We study the interactions of two agents i, j which want
to forward their packets to their intended destinations di, dj ,
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respectively. Node di (resp. dj) is outside the transmission
range of i (resp. j). Thus, there is need for i (resp. j) to
forward the packets of j (resp. i) to dj (resp. di). Both
agents may exhibit selfish or malicious behavior. The set of
admissible transmission decisions (i.e. actions) for an agent is

A = {−1, 0, 1}. (1)

The values −1, 0, 1 correspond to malicious, selfish and honest
action, meaning the agent chooses to launch an attack (i.e.
modify the packets and then forward them), not to forward
the packets and forward them to the destination, respectively.

The actions of the agents can be observed by overhearing
agents’ transmissions, which is possible due to the broadcast
nature of wireless transmissions [4], [8]. In this work we
assume that an IDS periodically performs the overhearing
process and then the TMS updates the trust values of the agents
and disseminates the new ones to them.

We assume a slotted time structure. At every time slot t the
IDS monitors the agents’ actions with a sampling probability
Pa. We use Id = 1 to denote that the IDS performs sampling,
while Id = 0 denotes that IDS is idle during current time slot.
The interactions of two transmitting agents i, j during a time
slot t are summarized as follows:
1. TMS informs agents about their trust values si, sj .
2. If IDS performs sampling (i.e. Id = 1)
• The agents (i, j) exchange the packets to be forwarded

to the corresponding destinations.
• IDS overhears the original packets.
• Agents select their actions ai, aj .
• IDS overhears the transmitted packets if any (i.e. ai, aj 6=

0), then compares them with the original packets to check
for content modifications. If it detects ai = −1 (resp.
aj = −1), it informs destination dj (resp. di) to discard
the modified packets, else dj (resp. di) uses the packets.

• Based on current trust values si, sj and detected actions
ai, aj , the TMS updates trust values to s′i, s

′
j for the next

time slot.

3. If IDS does not perform sampling (i.e. Id = 0)
• Agents exchange their packets to be forwarded to the

corresponding destinations.
• Agents select their actions (ai, aj).
• Receivers di, dj use the packets received.

Note that agents i, j do not know at the beginning of the time
slot if the IDS will perform sampling but they know the value
of the sampling probability Pa. Moreover, due to the existence
of malicious agents a distributed IDS cannot rely on exchange
of detected actions as in the selfish agents case [1]. Moreover,
the source can not directly notify its intended destination to
disregard modified packets. For these reasons, a centralized
IDS/TMS is employed in this study.

B. Instantaneous Reward

Each agent wants its packets to reach the desired destination.
This interest is captured by a forwarding benefit f > 0 if the
other agent forwards its packets (i.e. a = 1). Forwarding the

other agent’s packets incurs a transmission cost c > 0. Finally,
if an agent launches an undetected attack (i.e. the IDS does
not perform sampling), then an illegal gain e > 0 would be
acquired expressing the gain of a successful attack. In this
case, the other agent would suffer a loss ` > 0 from the attack.
Agent i does not know whether the IDS will be active in the
current time slot, so it uses the sampling probability Pa to
form the instantaneous expected reward

Ri(ai(t), aj(t)) = Rxi (ai(t)) +Rri (aj(t)), (2)

where

Rxi (ai(t)) =


−ci, if ai(t) = 1,

0, if ai(t) = 0,

(1− Pa)ei − ci if ai(t) = −1
(3)

Rri (aj(t)) =


fi, if aj(t) = 1,

0, if aj = 0

−(1− Pa)`i if aj(t) = −1
. (4)

Rxi and Rri are the expected rewards resulting from the trans-
mission actions of agents i and j. Rj is defined accordingly.

Remark 1. We note that in the case of multi-hop communica-
tions when agent i wants to send packets to a destination di
that is more than two hops away, then all the agents which lie
in the path from i to di are needed to forward the packets of
i and thus the reward for agent i would depend on the actions
of all the agents on that path.

C. Trust

TMS categorizes the agents into trustworthy and untrust-
worthy. Thus, S = {0, 1} is the trust value set and a trust value
si = 0 (resp. si = 1) means that the agent i is considered as
untrustworthy (resp. trustworthy). Apart from disseminating
and updating the agents’ trust values, an effective TMS would
ideally like to enforce a desired behavior to the agents.
This desired behavior, henceforth called as honest policy and
denoted as πH, promotes helping the trustworthy agents (i.e.
ai = 1 if sj = 1) and ignoring the untrustworthy ones (i.e.
ai = 0 if sj = 0). Thus

πH(si, sj) = sj ∀si ∈ S. (5)

In this paper we focus on Markovian TMS where the updated
trust values s′i, s

′
j depend on the current trust values si, sj , on

the actions ai, aj and on whether the IDS performed sampling
during the current time slot. If the IDS does not perform
sampling (i.e. Id = 0), the trust values remain unchanged

Pr(s′i, s
′
j |si, sj , ai, aj , Id = 0) = 1{(s′i,s′j)=(si,sj)}, (6)

otherwise the trust values are updated based on the following
principle. The TMS rewards the agents if they follow the
desired honest policy πH and punishes them if they do not.

If both agents are trustworthy (i.e. (si, sj) = (1, 1)) and
i follows πH (i.e. ai = πH(1, 1) = 1), then i remains as
trustworthy (i.e. s′i = 1). If i does not cooperate (ai = 0)
or modifies the packets (ai = −1), then it is punished (i.e.
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transits to s′i = 0) with a punishment rate q and 1, respectively
(modifying packets is more harmful than not forwarding
packets). If agent i is trustworthy and j untrustworthy (i.e.
(si, sj) = (1, 0)), and i selects ai = πH(1, 0) = 0, then
it remains at s′i = 1, while if i helps the untrustworthy j
(ai = 1) or attacks (ai = −1), then i is punished and transits
to s′i = 0 with probability 1. If both agents are untrustworthy
(i.e. (si, sj) = (0, 0)) and ai = πH(0, 0) = 0, then i could be
forgiven and transit to s′i = 1 with a redemption probability φ,
while by selecting ai = 1,−1, i remains untrustworthy (i.e.
s′i = 0). Finally, if i is untrustworthy and j is trustworthy
(i.e. (si, sj) = (0, 1)) and ai = πH(0, 1) = 1, then agent i is
forgiven with a redemption rate p, while by selecting a = 0,
or a = −1 it remains untrustworthy (i.e. s′i = 0). Because
trust should be more difficult to earn than to lose, we assume
q ≥ max {p, φ}. In summary

Pr(s′i = 1|si = 0, sj = 0, ai = 0, Id = 1) = φ, (7)
Pr(s′i = 1|si = 1, sj = 0, ai = 0, Id = 1) = 1, (8)
Pr(s′i = 1|si = 0, sj = 1, ai = 1, Id = 1) = p, (9)
Pr(s′i = 1|si = 1, sj = 1, ai = 1, Id = 1) = 1, (10)
Pr(s′i = 1|si = 1, sj = 1, ai = 0, Id = 1) = 1− q. (11)

For the combinations of ai, si, sj not defined in (7)-(11), it is
Pr(s′i = 1|si, sj , ai, Id = 1) = 0. Note finally that, Pr(s′i =
0|si, sj , ai, Id = 1) = 1− Pr(s′i = 1|si, sj , ai, Id = 1). Thus

Pr(s′i, s
′
j |si, sj , ai, aj) = Pa Pr(s

′
i|si, sj , ai, Id = 1) (12)

× Pr(s′j |sj , si, aj , Id = 1) + (1− Pa)1{(s′i,s′j)=(si,sj)}.

III. OPTIMAL ACTION SELECTION

In the static case where agents interact only once, an agent
wants to maximize its instantaneous expected reward (2). From
(2)–(4) it can be seen that choosing to forward the other agent’s
packets (ai = 1) is dominated by either not forwarding (ai =
0) or by attacking (ai = −1), regardless of aj . In particular,
if (1 − Pa)e > c (resp. if (1 − Pa)e < c) then a = −1
(resp. ai = 0) is the optimal myopic choice. If agents interact
repeatedly for an infinite (or unknown) time interval, then an
agent’s goal is to maximize the sum of discounted expected
long–term rewards

max
{ai(t)}t=∞

t=0

∞∑
t=0

δti E
[
Ri(ai(t), aj(t))

]
. (13)

where the expectation is over other agent’s actions and δ ∈
(0, 1) is the discount factor which expresses the foresighted-
ness of the agent. Agent i decides on its strategy using the
available information up to time t (history). A (pure) strategy
πi is a sequence of maps πti from histories hti to actions ai(t).
At instant t, the agents’ histories are

hti = {s
(0:t−1)
i , s

(0:t−1)
j , a

(0:t−1)
i , si(t), sj(t)},

htj = {s
(0:t−1)
i , s

(0:t−1)
j , a

(0:t−1)
j , si(t), sj(t)},

where x(0:t−1) = {x(0), . . . , x(t− 1)} for a variable x. Note
that si(τ), sj(τ) belong to both histories hti and htt for all

t, τ ≤ t. Thus, the history htc = {si(0), sj(0), . . . , si(t), sj(t)}
is public history. An appropriate solution concept for a game
with imperfect action monitoring is Perfect Public Equilibrium
(PPE) [6] which is an extension of the idea of Subgame
Perfect Equilibrium (a refinement of Nash Equilibrium (NE)
that eliminates non-credible threats).

Definition 1. The strategy profile (πi, πj) is a PPE if (πi, πj)
are public strategies and for each time slot t and history ht,
(πi, πj) yields a NE from that time on.

A strategy π = {πt}t=∞t=0 is called public if for every t,
πt depends only on public history htc and not on agent’s
private information (in this case the actions of the agents).
If a strategy depends only on current history (state) (i.e.
ai(t) = πti(si(t), sj(t)), aj(t) = πtj(sj(t), si(t)) for all t) and
not on the previous public history up to t, then it is called
Markovian public strategy. If additionally it does not depend
on t, then it is called Markovian stationary public strategy.
We note that if an agent employs πH over all time slots, it
constitutes a Markovian stationary public strategy. Henceforth
we drop subscripts i, j, t whenever it is clear from the context.

Theorem 1. Suppose Pa, p, φ > 0 and q >= max {p, φ}.
Suppose further that p > φ. Then the honest strategy profile
(πH, πH) is PPE if and only if the following hold for both
agents

f ≥ max {k1(1− Pa)e− k2c, k3(1− Pa)e, k3c}, (14)

where

k1 =
(1− δ + δPap)(1− δ + 2δPaφ− δPaφ2)
δPaφ(1− δ + δPap+ δPaφ− δPapφ)

,

k2 =
(1− δ + δPaφ)(1− δ + δPap+ δPaφ− δPaφ2)

δPaφ(1− δ + δPap+ δPaφ− δPapφ)
,

k3 =
1− δ + δPap

δPap
.

Furthermore, if p ≤ φ, (πH, πH) is PPE if and only if the
following hold for both agents

f ≥ max {k3(1− Pa)e, k3c}. (15)

Proof. If the honest policy πH constitutes the optimal strategy
for both agents at every instant and state (si, sj), then the
Bellman Equation (BE) [7] for i,

Vi(si, sj) = max
ai

{
Ri(ai, aj)

+δ
∑
s′i,s

′
j

Pr(s′i, s
′
j |si, sj , ai, aj)Vi(s′i, s′j)

}
, (16)

must be satisfied for ai = πH(si, sj), given that aj =
πH(sj , si). Then the corresponding value function V H

i (si, sj)
for agent i when both agents follow πH is

V H
i (0, 0) =

δPaφ(1− δ + 2δPap− δPapφ)
(1− δ)(1− δ + δPap)k4

(fi − ci), (17)
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V H
i (0, 1) =

1

(1− δ)k3
fi −

1

1− δ
ci, (18)

V H
i (1, 0) =

1

1− δ
fi −

1

(1− δ)k3
ci, (19)

V H
i (1, 1) =

fi − ci
1− δ

, (20)

where k4 = 1− δ + 2δPaφ− δPaφ2.
The strategy profile (πH, πH) is a PPE if and only if the one

shot deviation principle (OSDP) holds, namely no profitable
one shot deviations exist, for every possible public history.
OSDP states that if there is a better strategy than the one under
consideration, then it is profitable to deviate once and then
use the considered strategy for the rest of the game [6]. The
only relevant part of public history is the vector of binary trust
values (si, sj) giving rise to four possibilities. Thus optimality
in BE for agent i gives

R(a∗i , a
∗
j ) + δ

∑
s′i,s

′
j

Pr(s′i, s
′
j |si, sj , a∗i , a∗j )V H

i (s′i, s
′
j) ≥

R(ai, a
∗
j ) + δ

∑
s′i,s

′
j

Pr(s′i, s
′
j |si, sj , ai, a∗j )V H

i (s′i, s
′
j) (21)

where a∗i = πH(si, sj), a∗j = πH(sj , si). Eq. (21) must hold
for every possible state (si, sj) and action ai 6= a∗i . The
same reasoning follows for agent j. Next we consider one
shot deviations from the honest profile at each state. Let
(si, sj) = (0, 0). Then πH(0, 0) = 0. The possible deviations
are a = 1 and a = −1. We thus evaluate the optimality
inequality (21) by utilizing (2), (12), (17)-(20) to obtain

f ≥ −k2c (22) f ≥ k1(1− Pa)e− k2c (23)

Next we consider the remaining deviations from πH at the
remaining states. Proceeding along similar lines, deviations
from πH at (0, 1) by selecting a = 0, a = −1 lead to

f ≥ k3c (24) f ≥ k3(1− Pa)e (25)

respectively. Deviations from πH at (1, 0) by selecting a = 1,
a = −1 lead to

f ≥ k5c (26) f ≥ k6(1− Pa)e+ k5c (27)

respectively. Deviations from πH at (1, 1) by selecting a = 0,
a = −1 lead to

f ≥ p

q
k3c (28) f ≥ pk3(1− Pa)e (29)

respectively, where

k5 =
δ2P 2

a (1− p)(p− φ)− (1− δ + δPap)k4
δPak7

,

k6 =
(1− δ + δPap)k4

δPak7
,

k7 = 1− δ + δPap+ δPaφ− δPap2 − δPaφ2 + δPapφ.

For given δ, Pa, p, q, φ, e, the right hand side of each inequality
(22)-(29) defines a line. Let these lines be denoted as b1(c)-
b8(c), respectively and let λ1-λ8 be the respective slopes. It is
λ3 = k3 > 1 > λ2, as λ2 = −k2 < 0, λ3 ≥ λ7, because q ≥ p
and λ3 > λ5. Moreover, b1(0) = b3(0) = b5(0) = b7(0) = 0.
Thus, b3(c) ≥ max{b1(c), b5(c), b7(c)} for all c ≥ 0.

Furthermore, it is b4 ≥ b8 (as 0 < p ≤ 1, note that b4, b8
are independent of c). Moreover, 0 < b6(0) ≤ b4 and b6(c)
intersects b4 at E = (cE , fE) with

cE =
(1− δ + δPap)(1− p)k8

δ2P 2
a p(1− p)(p− φ)− p(1− δ + δPap)k4

(1− Pa)e

where

k8 = 1− δ + δPap+ δPaφ− δPaφ2. (30)

If λ6 ≤ 0, then cE ≤ 0 and thus b4 ≥ b6(c) for all c ≥ 0. Let
B = (cB , fB) denote the intersection of b3(c) with b4 with
cB = (1− Pa)e. If λ6 > 0, then it is cB ≤ cE . Thus, if (24)
and (25) hold, then (27) holds. Finally,

b2(0) > b4(0)⇔ p > φ. (31)

Since λ2 < 0, if p ≤ φ, then b4 ≥ b2(c) for all c ≥ 0. On
the other hand, if p > φ, b2(c) intersects b4 at A = (cA, fA),
with cA = (p−φ)(1−δ+δPap)

pk8
(1− Pa)e and it is

cA < cB ⇔
(p− φ)(1− δ + δPap)

p(1− δ + δPap+ δPaφ− δPaφ2)
< 1, (32)

which holds. Thus, if p > φ (resp. p ≤ φ) then (23), (24) and
(25) (resp. (24) and (25)) suffice to represent the region over
which the honest policy πH prevails and the rest of inequalities
are redundant. The proof is complete. �

Next, we consider the behavior of the set defined by (14) if
p > φ and (15) if p ≤ φ as the illegal gain e varies. This set
describes the structural properties of reward-related parameters
f, c, e that are consistent with the optimality of the honest
policy πH for given values of δ, Pa, p, φ, q (see Fig. 1).

Proposition 1. The set

K(e) =
{
(c, f) ∈ R2 : c, f ≥ 0 and (14) holds

}
, if p > φ

K(e) =
{
(c, f) ∈ R2 : c, f ≥ 0 and (15) holds

}
, if p ≤ φ

is decreasing in e, i.e. K(e′) ⊂ K(e) for e′ > e.

Proof. If p > φ, then K(e) is defined by b2(c), b3(c), b4.
The slopes λ2=−k2, λ3=k3, λ4=0 are independent of e. The
offsets of b2(c), b4 (i.e. k1(1−Pa)e, k3(1−Pa)e, respectively)
are both increasing in e, as the coefficients of e are always
positive for 0 < δ < 1, 0 < Pa, p, φ, while the offset of
b3(c) is equal to 0. Let A′ = (cA′ , fA′), B′ = (cB′ , fB′),
D′ = (cD′ , fD′) be the intersection points defining K(e′) for
e′ > e. Then cB′ > cB , fB′ > fB , cD′ = cD = 0, fD′ > fD,
fA′ > fA and

cA′ > cA ⇔ k1 > k3 ⇔ p > φ

and according to (32), it is cA′ < cB′ .
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On the other hand, if p ≤ φ, then K(e) is defined only
by b3(c), b4, according to Theorem 1. Let Z = (cZ , fZ) be
the intersection of b4 with the line c = 0. The points defining
K(e) are Z,B. For e′ > e the points defining K(e′) are B′

and Z ′ = (cZ′ , fZ′), with cZ′ = cZ = 0 and fZ′ > fZ ,
because the coefficient of e (i.e. k3(1− Pa)) is positive. �

Proposition 1 states that as the illegal gain increases, at-
tacking becomes more tempting and thus the region where πH

constitutes the optimal strategy becomes smaller.

IV. DISCUSSION

Theorem 1 states that if it is not profitable for an agent to
deviate from πH and select a = −1 when being at states (0, 0),
(0, 1) (see (23), (25)) and a = 0 at state (0, 1) (see (24)), then
there will be no profitable deviations from πH at other states,
as well, given that the other agent follows πH.

Assuming only selfish agents that can not take the malicious
action, K(e) is actually independent of e and it is defined only
by (24) (given that the punishment rate q is at least as big as
the redemption rate p). This means that if a selfish agent has
enough incentives at state (0, 1) to follow πH(0, 1) = 1 and
pay the transmission cost c to transit to (1, 1) with probability
Pap in order to receive forwarding benefits f , then it will be
beneficial to follow πH at every other state.

Malicious behavior changes the above conditions. Eq. (25)
is analogous to (24) and ensures that deviations a = −1 at state
(0, 1) are not profitable. Eq. (23) ensures that a = −1 at (0, 0)
is not profitable. This is needed because malicious behavior
could have benefits by this deviation as it could result in a
positive instantaneous reward as opposed to the selfish case
where the myopic optimal choice coincides with πH(0, 0) = 0.
Thus, there is need to provide agents with incentives not to opt
to a = −1 at state (0, 0). This is the purpose of the redemption
rate φ. For instance, if φ = 0, then (0, 0) is an absorbing state
and a = −1 (resp. a = 0) is the optimal choice if (1−Pa)e > c
(resp. (1− Pa)e ≤ c).

The individual impact of the remaining parameters on the
honest optimality region K(e) can be assessed by differentiat-
ing the respective lines on the boundary. Suppose p ≤ φ ≤ q.
Then analysis of the partial derivatives of b3(c) and b4 with
respect to Pa and p shows that the set K(e) gets larger as Pa, p
increase. This confirms intuition because for higher values of
the IDS sampling probability Pa, misbehaving will be detected
and punished with higher probability. Moreover, for higher
values of the redemption rate p the incentives to comply with
the honest policy become larger and misbehaving becomes less
tempting.

The impact of the sampling probability Pa and redemption
rate p on the honest optimality region can be studied in a
similar manner. Suppose p ≤ φ ≤ q. We express (24) and (25)
in terms of Pa and p for given δ, φ, q and for a given set of
payoff parameters, assuming f > c, e. The research region has
smooth boundaries that form conic sections. Differentiation
shows that p is decreasing in Pa. Thus for higher values of IDS
sampling probability Pa, smaller values of the redemption rate

transmission cost c

fo
rw

ar
d
in

g
b
en

efi
t

f

K(e)

A B

K(e′)A′ B′

D

Z

D′

Z ′

Fig. 1. The regions K(e) and K(e′) for e′ > e are illustrated with the light
gray area being equal to their difference K(e) \K(e′).

p suffice to sustain optimality for πH. This confirms intuition
because for higher values of Pa, compliance with πH is more
likely to be detected and thus the agent to be forgiven and
transit to s′ = 1. Moreover, for higher values of Pa attacking
is more likely to be detected.

V. CONCLUSION

In this paper the impact of action monitoring and trust
update mechanisms on the decision making process of au-
tonomous agents able to exhibit both selfish and malicious
behavior was investigated. Conditions leading the agents to
follow a desired trust–based strategy were derived when the
agents condition their actions to the publicly observed trust
values. Such conditions can be utilized to jointly design cost-
effective IDS and TMS mechanisms for detecting misbehaving
patterns and incentivizing agents to follow a desired behavior
to enhance network security and other performance measures.
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