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Abstract— Weighted MSE (wMSE), recently introduced 
modification of MSE, is an image quality metric used to estimate 
visual quality of filtered images. It provides better than MSE 
correspondence to a human perception in consideration of 
distortions introduced by image filters. In this paper, wMSE is 
used both as a criterion to evaluate filtering efficiency of the 
modification of BM3D filter with spatially varying parameters, as 
well as to train a specially designed neural network to predict 
filters’ parameters. Extensive analysis on three image datasets 
demonstrates that the proposed modification of BM3D provides 
lower values of wMSE than those of BM3D, both effectively 
suppressing noise in homogeneous regions as well as preserving 
fine details and texture.  

Keywords—image denoising, image visual quality assessment, 
neural networks, BM3D 

I.  INTRODUCTION 
Image denoising is an area of intense research with a large 

number of new image denoising methods proposed every year. 
For performance evaluation of an image denoising method 
usually full-reference image quality metrics are used, among 
them mean square error (MSE) and, its derivative, peak signal 
to noise ratio (PSNR) are the most widespread. At the same 
time, other image quality metrics, coping better with 
peculiarities of human visual system, become more and more 
popular [1-3]. However, these metrics still lack high enough 
correlation with a human perception [2] to assure their efficient 
usage in digital image processing.  

The outputs of most full-reference metrics produce single 
values to characterize a difference between distorted and 
reference images. Image homogeneous regions, for which 
noise suppression is the most efficient, often has a larger 
contribution to the metrics’ value than regions with edges and 
fine details. Because of this, an effective denoising of 
homogeneous regions, resulting in a better quality metric value, 
can compensate a slight decrease of the metrics’ value due to 
over-smoothing of fine details and texture (usually occupying 
much less space in images comparing to homogeneous 
regions). However, as it was demonstrated in [4], details and 
texture preservation in noisy images is often more important 
for a human observer than effective noise suppression in 
homogeneous regions. This is also valid for many tasks of 
automatic image interpretation and object recognition, where a 
quality of solving these tasks strongly depends on a level of 
preservation of fine details and texture in filtered images.  

In [4], two image quality metrics, namely, a weighted 

modification of MSE metric (wMSE) and the corresponding 
modification of PSNR metric, wPSNR were proposed. In order 
to compute an wMSE value, three images shall be used: 
original, noisy and filtered. Two pointwise distances are 
computed: between noisy and original (D1), and between 
filtered and original images (D2). Larger weights (by 5 times, 
found empirically in [4]) are assigned to those pixels for which 
values of D2 are larger than values of D1. This reflects the 
observation that for a human perception distortions introduced 
by filtering have larger weights than distortions eliminated by 
the filtering.  

Due to this, it is important to consider the following 
problem. How to modify a filtering method taking into account 
wMSE or other metrics (e.g. weighted modifications of metrics 
PSNR-HVS [5] and PSNR-HVS-M [6], considered in [4])? 
This is not a trivial task, since one needs to know a reference 
image in order to compute such a metric, and a reference image 
is unavailable in practice. Thus, the only way to resolve this is 
to predict a value of such a metric inside the filtering method. 
Current paper is devoted to study the above problem.  

In this paper, we modify one of the state-of-the-art in image 
denoising, the BM3D filter [7]. For BM3D, it is possible to 
control a degree of noise suppression by changing the threshold 
value at the hard-thresholding stage. A good noise suppression 
and details preservation is provided by using a standard 
filtering profile that uses the threshold value equal to 2.7σ [7] 
(noise is zero-mean Gaussian noise with variance σ2). Let us 
denote this profile by S-BM3D. Possibly better details 
preservation but worse noise suppression can be achieved if 
one uses lower threshold value, e.g. equal to 2σ. Let us denote 
this profile by P-BM3D. Main idea of the proposed approach is 
to design a neural network to decide effectively and pixelwise 
between outputs of S-BM3D and P-BM3D. For the training of 
a network, we use maps of values of wMSE for outputs of S-
BM3D and P-BM3D. As a neural network inputs, several 
pixelwise or patch-wise features of noisy image are calculated. 
The trained network shall produce relative weights for outputs 
of S-BM3D and P-BM3D. Thus, the output of the proposed 
spatially adaptive BM3D (called A-BM3D) will be a linear 
combination of outputs of different profiles of BM3D (namely, 
S-BM3D and P-BM3D).  

The paper is organized as follows. In Section II the 
description of the proposed filter is provided. In Section III, an 
extensive analysis of A-BM3D in a comparison with two 
underlying profiles of BM3D is carried out. Finally, the 
conclusion follow. 
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Fig. 1. Flow chart of the proposed A-BM3D filter 

II. DESCRIPTION OF THE PROPOSED FILTER  

A. Main idea 
Flow chart of the proposed A-BM3D filter is given in 

Fig. 1. Output of the filter for a given pixel is computed as a 
pixelwise weighted sum of the outputs of P-BM3D and S-
BM3D: 

L(i,j) = P(i,j)w(i,j) + S(i,j)(1-w(i,j)).    (1) 

 Here L(i,j) is an output of the A-BM3D filter for a pixel at 
location (i,j), P(i,j) is the output of P-BM3D filter, S(i,j) is the 
output of S-BM3D filter, w(i,j) is the weight, calculated by 
neural network, i=1,...,N and j=1,...,M are indexes of the image 
pixels, N x M  is the size of the image. 

The neural network with 9 inputs and 1 output was used in 
this work. Nine feature maps are uses as the input to the neural 
network. They are calculated using noisy image and outputs of 
P-BM3D and S-BM3D filters. Details of their construction will 
be given below in subsection II.C. 

Note that the value of σ is required to calculate feature 
maps as well as to calculate outputs of P-BM3D and S-BM3D. 
This value is pre-estimated by one of blind noise parameters 
estimation methods (e.g. [8]) if not known in advance. 

B. Maps of weights for learning the neural network 
In this subsection we explain in details the goal of the 

designed neural network and the training procedure.  

The aim of the designed neural network is to effectively 
switch (alternate) between outputs of P-BM3D and S-BM3D in 
order to provide the lowest possible value of the wMSE metric. 
To do this, we have used Δ maps, where Δ(i,j) is defined as: 
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Fig. 2,b shows an example of the difference between Δ 
maps calculated for outputs of S-BM3D and P-BM3D (for the 
reference image Barbara and noisy image presented in Fig. 
2,a). Bright pixels in Fig 2,a indicate that P-BM3D provides 
lower values of Δ than S-BM3D, and vice versa.    

Since the image in Fig. 2,b is noisy and may be not so 
suitable for training, we have pre-filtered it by the mean filter 
with the window size 13. A binarized result after filtering is 
presented in Fig. 2,c, where white pixels indicate that P-BM3D 
provides lower Δ values and black pixels indicate that S-BM3D 
provides better quality.  

 
 

 
a 

 
b 

 
c 

Fig. 2. a) Noisy test image Barbara, σ2=400, b) Difference between values of Δ for S-BM3D and  P-BM3D, c) Smoothed in 13x13 window and binarized 
difference between values of Δ for S-BM3D and  P-BM3D 
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Looking at Fig. 2,c, one may think that P-BM3D provides 
better visual quality than S-BM3D for image regions with high 
local energy (edges, textures, contrast fine details). However, it 
is not always so. For example, the table’s leg in Fig. 2 is an 
object with a high local energy (along the border of the leg). 
Nevertheless, there are black pixels in Fig. 2,c corresponding to 
the table’s leg, i.e. S-BM3D provides better visual quality for 
that region. This can be explained by a high level of self-
similarity of such image regions and by the ability of BM3D to 
extract and preserve information from regions with high self-
similarity.  

It appears to be more reasonable (found empirically) to 
assume that P-BM3D provides better denoising for regions 
where high local energy is combined with a low self-similarity. 
This assumption will be taken into account in the selection of 
image features for inputs of the neural network.  

C. Feature maps 
As inputs of the neural network, the following 9 features 

calculated for each image pixel with indexes (i,j)  have been 
selected: 

#1: In the noisy image local variance σ2
loc is calculated for 

patch of 9x9 pixels (top-left corner pixel of the patch has 
coordinates i-4, j-4).  The feature #1 is calculated as σloc/ σ;  

#2: This feature is calculated similarly to the feature #1, 
only using an output of P-BM3D instead of the noisy image; 

#3: This feature is calculated similarly to the feature #1, 
only using an output of S-BM3D instead of the noisy image. 
Feature map #3 for the image from Fig. 2,a is shown in Fig. 
3,a; 

#4: Let us define the patch of 9x9 pixels of the noisy image, 
denoted by A. For the patch A, a patch B is searched in the area 
(i-15,...,i+15, j-15,...,j+15) to minimize the value of root mean 
square error (RMSE) between A and B. The feature #4 is 
calculated as RMSE(A,B)/ σ.  

#5: This feature is calculated similarly to the feature #4, 
only using an output of P-BM3D instead of the noisy image; 

#6: This feature is calculated similarly to the feature #4, 
only using an output of S-BM3D. Feature map #6 for the image 
in Fig. 2,a is shown in the Fig. 3,b; 

#7:  This feature is calculated as a pixelwise difference 
between the output of P-BM3D and the noisy image. The 
difference is normalized (divided by σ). 

#8:  The feature is calculated by a pixelwise difference 
between output of S-BM3D and the noisy image. The 
difference is normalized (divided) by σ. 

#9:  The feature is calculated as a pixelwise difference 
between absolute values of features #7 and #8.  

Thus, among 9 feature maps, the first 3 are calculated using 
local variances, next 3 are calculated using dissimilarity maps, 
and the last 3 are calculated based on pixelwise differences 
between noisy and filtered images.  

 

 
a 

 
b 

Fig. 3. a) Feature map #3 for image from Fig. 2a, b) Feature map #6 for 
image from Fig. 2a. 

As a result, for each pixel of the given noisy image, values 
of 9 features are calculated. If the reference image is available, 
then it is possible to calculate also the map of weights similar 
to the map shown in Fig 2,c. In the aggregate, values of these 
features and the values of calculated weights (for all pixels or 
for a part of image pixels) are used to train the neural network.  

Note that the feature map #3 and feature map #6, presented 
in Fig. 3, used together, allow neural network to distinguish the 
table leg (considered in example above) from other objects 
with high local energy.  

D. Configuration and learning the neural network 
We have considered different configurations of the neural 

network. Best result has been achieved by applying the 
perceptron, consisting of 32 neurons at the input layer 
(activation function tansig), 16 neurons at the hidden layer 
(activation function tansig) and 1 neuron at the output layer 
(linear activation function). 

As the training data, values of 9 features maps (inputs) and 
smoothed binarized maps of weights for 180000 pixels have 
been used. The pixels have been randomly selected from 100 
different images taken randomly from different databases. A 
zero-mean Gaussian white noise was added to selected images 
with the following values of σ (5, 10 and 20).  

Besides the neural network with 9 inputs, we have also 
considered the neural networks with smaller number of inputs. 
The results of experiments are presented in Table I. 

TABLE I.  RESULTS OF THE NEURAL NETWORK LEARNING FOR 
DIFFERENT SETS OF FEATURES 

Features 
 #1 and 

#4 
#1, #2, 

#3 
#4, #5, 

#6 
#7, #8, 

#9 First 6 All 9  

MSE of 
learning 0.154 0.197 0.149 0.198 0.139 0.133 

 

As it is seen from Table I, there is a possibility to decrease 
a number of inputs to 6 with a slightly increased MSE of 
learning. However, this is not necessary, since the time for 
calculation of the neural network’s output is insignificant in 
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comparison to the time of calculation of feature maps #4, #5 
and #6. Since these features are the most informative ones, 
their removal from inputs will significantly increase MSE of 
learning. 

III. NUMERICAL ANALYSIS 
Let us compare the performance of A-BM3D filter, its 

ability to provide lower filtered wMSE values (or bigger 
wPSNR values) than those by filters P-BM3D and S-BM3D.  

For the analysis, three sets of test images are used. First, we 
have selected randomly 22 grayscale images in quarter 
resolution (384x256 pixels) from Amsterdam Library of 
Textures (ALOT) [9]. Second, grayscale versions of 25 
reference images from TID2013 database [2] are use in the 
analysis. Finally, we have used the grayscale versions of 16 
standard test images: Aerial, Airfield, Baboon, Barbara, Bikes, 
Bird, Boat, Bridge, Cameraman, Goldhill, Harbour, Lena, 
Livingroom, Man, Moon, Peppers. 

For all these images a zero-mean Gaussian white noise with 
σ=15 was added. The value σ=15 (different from those values 
used for the neural network training) is selected to assure that 
the normalization of features maps is correct and that the 
proposed A-BM3D filter is able to deal with any value σ  of the 
standard deviation of noise. 

Fig. 4 shows curves of wPSNR for the filters A-BM3D, S-
BM3D and P-BM3D for all three test sets. As it is can be seen 
from this Figure, there are images for which P-BM3D has 
larger wPSNR than S-BM3D, and for other images S-BM3D 
has larger wPSNR than P-BM3D. In all the cases A-BM3D 
provides largest value of wPSNR, sometimes outperforming S-
BM3D and P-BM3D by about 1 dB.   

Fig. 5 illustrates better visual quality of output of the 
proposed A-BM3D filter. 
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Fig. 4. Values of wPSNR for compared denoising methods for different sets of images (σ=15) 
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Reference image Fly Noisy image, σ2=400 P-BM3D, PSNR=30.72 dB, 

SSIM=0.48, wPSNR=28.53 dB 
S-BM3D, PSNR=33.04 dB, 

SSIM=0.63, wPSNR=28.59 dB 

 
Output of neural network A-BM3D, PSNR=32.51 dB, 

SSIM=0.60, wPSNR=29.42 dB 
Enlarged fragment of S-BM3D  output Enlarged fragment of A-BM3D output

Fig. 5. Visual comparison of the Fly test image denoising using P-BM3D, S-BM3D and proposed A-BM3D 

As it can be seen, P-BM3D preserves better low contrast 
texture and fine details while S-BM3D suppresses better noise 
in homogeneous regions. At the same time, the proposed A-
BM3D combines advantages of both BM3D profiles, providing 
spatially adaptivity between the profiles in the proper places of 
the image. It is also confirmed by the value of wPSNR metric 
which for A-BM3D output is larger than those for S-BM3D 
and P-BM3D ones by over 0.8 dB. Note that both widely used 
metrics PSNR and SSIM fail in this case, indicating wrongly 
that the oversmoothed output of S-BM3D provides superior 
quality than the output of A-BM3D.   

CONCLUSIONS 
In this paper, a new spatially adaptive modification of 

BM3D filter, A-BM3D was introduced. It alternates (switches) 
between two profiles of BM3D using specially designed neural 
network, output of which was calculated for each pixel of the 
filtered image. It has been demonstrated that A-BM3D 
provides lower values of wMSE, which was used to train the 
neural network.  

Perspectives for a further study may consist in usage of 
more filter profiles in the design and in application of other 
image quality metrics with a better correspondence to a human 
perception than wMSE.  

ACKNOWLEDGMENT 
This work is supported by Academy of Finland, project 

no. 287150, 2015-2019. 

REFERENCES 
 

[1] Z. Wang, A. Bovik, H. Sheikh, E. Simoncelli, "Image quality 
assessment: from error visibility to structural similarity", IEEE 
Transactions on Image Processing 13(4), 2004, pp. 600–612.  

[2] N. Ponomarenko, L. Jin, O. Ieremeiev, V. Lukin, K. Egiazarian, J. 
Astola, B. Vozel, K. Chehdi, M. Carli, F. Battisti, C.-C. Jay Kuo, "Image 
database TID2013: Peculiarities, results and perspectives", Signal 
Processing: Image Communication, vol. 30, 2015, pp. 55-77.  

[3] D. Chandler, "Seven Challenges in Image Quality Assessment: Past, 
Present and Future Research", ISNR Signal Processing, vol. 2913, 2013, 
pp. 1–53. 

[4] N. Ponomarenko, S. Krivenko, K. Egiazarian, V. Lukin, J. Astola, 
"Weighted mean square error for estimation of visual quality of image 
denoising methods", CD ROM Proceedings of VPQM, 2010, 6 p.  

[5] K. Egiazarian, J. Astola, N. Ponomarenko, V. Lukin, F. Battisti, M. 
Carli, "New full-reference quality metrics based on HVS", Proceedings 
of the Second International Workshop on Video Processing and Quality 
Metrics, VPQM, 2006, 4p. 

[6] N. Ponomarenko, F. Silvestri, K. Egiazarian, M. Carli, J. Astola, V. 
Lukin, "On between-coefficient contrast masking of DCT basis 
functions", Proceedings of the third international workshop on video 
processing and quality metrics, VPQM, 2007, 4 p. 

[7] K. Dabov, A. Foi, V. Katkovnik, K. Egiazarian, "Image denoising by 
sparse 3-D transform-domain collaborative filtering", IEEE 
Transactions on Image Processing, 16(8), 2007, pp. 2080-2095. 

[8] S. Abramov, B. Vozel, J. Astola, K. Chehdi, V. Zabrodina, V. Lukin, 
"Methods for blind estimation of the variance of mixed noise and their 
performance analysis", INTECH Open Access Publisher, 2011. 

[9] G. J. Burghouts and J. M. Geusebroek, Material-specific adaptation of 
color invariant features, Pattern Recognition Letters, vol. 30, 2009, pp. 
306-313. 

 

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 767


