
Visualization of Feature Evolution During

Convolutional Neural Network Training

Arjun Punjabi

Electrical Engineering and Computer Science

Northwestern University

Evanston, IL, USA

arjunpunjabi2015@u.northwestern.edu

Aggelos K. Katsaggelos

Electrical Engineering and Computer Science

Northwestern University

Evanston, IL, USA

aggk@eecs.northwestern.edu

Abstract—Convolutional neural networks (CNNs) are a staple

in the fields of computer vision and image processing. These

networks perform visual tasks with state-of-the-art accuracy; yet,

the understanding behind the success of these algorithms is still

lacking. In particular, the process by which CNNs learn effective

task-specific features is still unclear. This work elucidates such

phenomena by applying recent deep visualization techniques

during different stages of the training process. Additionally, this

investigation provides visual justification to the benefits of transfer

learning. The results are in line with previously discussed notions

of feature specificity, and show a new facet of a particularly vexing

machine learning pitfall: overfitting.

Keywords—deep learning; convolutional neural network;

feature visualization; transfer learning

I. INTRODUCTION

Convolutional neural networks (CNNs) have provided state-
of-the-art performance in a variety of computer vision and image
processing applications [1]. Recent developments in hardware,
namely GPUs, have caused an inundation of CNN-based
methods. That said, a discrepancy exists between knowledge of
how to construct such algorithms and knowledge of how these
algorithms operate. One major criticism of CNNs in general
refers to the treatment of the algorithm as a “black box”, with
the ultimate result of the training procedure shrouded in mystery.
Although the process of backpropagation used to modify filter
weights has been thoroughly discussed, describing the function
of these features has been less explored.

Algorithms that fall under the category of deep visualization
strive to address such issues. At their core, these methods
attempt to bridge the gap between human and machine
perception by illustrating CNN features in a visual manner. This
paradigm differs from some traditional views on CNN analysis
that are primarily results oriented. It is common practice to judge
the efficacy of any modifications to a network or dataset by the
capacity to increase performance. Of course, this is a
functionally logical approach to CNN design; however, not
observing changes to the network features themselves is another
example of the “black box” methodology. Such thinking may
inhibit progress towards the next breakthrough in machine
learning. It is the intention of deep visualization to aid in
combatting the esoterica of CNNs.

II. RELATED WORK

Deep visualization encompasses several approaches that
have been described in the literature. This analysis will focus on
a technique called activation maximization. The term was
perhaps first coined in a 2009 publication in which the authors
describe “qualitative interpretations of high level features” [2].
They produce visualizations from a deep belief network (DBN)
trained on the classic MNIST digit classification dataset that
confirm intuitions held about the learned representations. Since
then, several authors have employed activation maximization
and modified the procedure or usage. Yosinksi et al. [3] applied
the method to a more complex classification problem and
developed an accompanying software toolbox for interactive
visualization. A 2015 investigation at Google described a
technique that modified activation maximization with the
purpose of creating art as “inceptionism” [4]. In [5], the
algorithm was modified to highlight the multifaceted nature of
specific network neurons. Mahendran and Vedaldi [6] created a
generalized algorithm to perform activation maximization as
well as another deep visualization method: inversion.

Inversion produces a different kind of visualization that is
primarily used to quantify the loss of information at increasingly
deep network layers. In essence, the ability for a network to
reconstruct an input image from features at a given layer signify
the information retained in those layers. Mahendran and Vedaldi
first described their inversion method in [7], and Dosoviskiy and
Brox supply a different approach in [8]. Inversion is related to
another type of visualization that uses a “deconvolutional”
network to identify stimuli of individual feature maps [9]. This
identification is akin to locating the receptive field of a feature,
a concept also explored in [10].

A third class of deep visualization algorithms can be
described as sensitivity or saliency maps, which illustrate the
support of a particular feature in a given image. Simonyan et al.
[11] compare this method with a form of activation
maximization. In [12], the authors show sensitivity maps with
evidence both for and against a particular class, while [13]
develops heatmaps showing relevance or importance of image
regions.

All of these methods yield complementary views of the
information in neural network features. Because this analysis
focuses on activation maximization, a more detailed explanation
of the procedure is outlined in the next section.

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 321

III. ACTIVATION MAXIMIZATION

The following explanation of the activation maximization
method will synthesize information from [3] with additional
description supplied by [6]. As previously suggested, the
algorithm aims to create visual representations of CNN features,
either at the convolutional filter level or object class level. In this
manner, the method can be cast as an inverse problem that is
solved using an optimization approach. To begin, consider an
RGB image that produces some activation when passed through
a CNN. Yosinksi formulates the problem as in [3]:

 𝑥∗ = arg max
𝑥

(𝑎𝑖(𝑥) − 𝑅𝜃(𝑥))

where 𝑥∗ is the final visualization, 𝑥 is a candidate input image
to the network, 𝑎𝑖(𝑥) is the activation for some particular unit 𝑖,
and 𝑅𝜃(𝑥) is some parameterized regularization function. In
general, the unit 𝑖 to be maximized can be the index of a filter or
element in any layer of the network; however, in this case, the
following analysis will only concern maximizing indices
representing classes in the last layer of the network. The final
visualization will be a synthetic RGB image of the same size as
the input. One can also formulate a minimization to accomplish
the same task, as Mahendran and Vedaldi do in [6], that is:

𝑥∗ = arg min
𝑥

(𝑙(𝛷(𝑥), 𝛷0) + 𝑅𝜃(𝑥))

where 𝑙(𝛷(𝑥), 𝛷0) is a loss function between the feature
representation of the input 𝛷(𝑥) and the target feature
representation 𝛷0. 𝛷0 can either be the weights of the filter one
wishes to visualize, or in this analysis, the final feature vector of
the target class. In this case, the loss function is usually defined
as the Euclidean distance between the two vectors.
Alternatively, although the logic is somewhat circular, the loss
function can be defined as the negative of the similarity,
typically calculated using a dot product. This analysis will opt
for the simpler case defined by Yosinski [3].

The optimization can be effectively solved using a gradient
descent procedure. The pixels in 𝑥 are modified in the direction
of the gradient of 𝑎𝑖(𝑥). Consequently, the regularization is
usually applied to the gradient step rather than in the objective
function itself. Several regularizers are suggested in [3] and [6],
with the overall goal of restricting the visualizations to natural-
looking images. Without such a condition, the resulting images
will not be semantically interpretable to humans, even if they are
reasonable solutions to the optimization. The authors in [6]
present two bounds on pixel range and variation, which have
some corollaries in [3]. Some more complex functions that
involve pixel shifts and texture regularizers are also presented.
There is not a clear consensus on the optimal regularization
methods; therefore, this analysis opts for two relatively simple
conditions. Pixel changes that fall outside the normal range are
clipped, and a 5x5 median filter is applied every four gradient
steps. It was experimentally found that these conditions were
satisfactory to produce semantically interpretable visualizations.

IV. NEW APPLICATIONS: FEATURE EVOLUTION AND TRANSFER

LEARNING

At this point, activation maximization as a method for deep
visualization has been thoroughly discussed, both in usage as
well as in implementation. Yet, there is much untapped potential
in this domain. One key assumption that predicates the use of
the algorithm is the existence of a fully trained network. This
condition is a natural one: it is logical to visualize features after
their modifications during training. However, perhaps
visualizing the evolution of features during the training process
would be even more enlightening. Most observations of neural
network training have involved tracking values of loss functions
or validation accuracies; now, there is an opportunity to
visualize the actual features at play. By visualizing features at
several time points during training, the evolution of features can
be compared to improvements in performance and shed light on
the otherwise obfuscated learning procedure.

This new line of thought also presents the chance to observe
another somewhat enigmatic facet of neural networks: transfer
learning. As described in [14], the generality of low-level
features suggests that a network trained on one task may only
need to slightly modify those features in order to perform an
entirely different task on new data. The authors argue that it is
the deep layer features that are task specific and thus require
greater changes. In practice, this manifests itself when a standard
CNN architecture is initialized with weights from one task and
then fine-tuned with a new dataset. It can be seen that the
training procedure will converge faster, and in some cases the
accuracy may even be higher than if the starting weights were
randomly initialized. With this new paradigm of using activation
maximizations to visualize features during learning, perhaps a
greater understanding of this phenomenon will emerge.

V. RESULTS AND DISCUSSION

Two experiments were designed to examine visualizations
that arise during the training of a CNN. In one instance, the
filters weights in the network were randomly initialized in the
usual fashion. The other case began with weights trained on the
ImageNet ILSVRC 2012 dataset for 1000 class object
classification [15]. The CNN architecture used in both cases is
the VGG-16 network described in [16]. The network was
implemented in Theano using Keras as a front-end [17][18].
Some additional references were used in the compilation of the
code [19][20]. The Adadelta optimizer was used in the training
procedure [21], and categorical cross entropy was used for
classification. The network was trained using an NVIDIA Titan
Z, with total training times on the order of several hours. The
activation maximization implementation also made use of the
Titan Z, where each visualization took 2.5 minutes to complete.

In both instances, the classification task was to differentiate
between a small subset of the ImageNet data. Namely, only four
classes were used: tree frog, flamingo, pool table, and
hamburger. Because there are only four classes in this new task,
the last layer of the VGG network was changed from a length of
1000 to a length of four. As a result, the weights from this layer
could not be transferred in the pretraining experiment. Each
class contains 1300 images, yielding a total dataset of 5200
images. 400 of these images were put aside in a validation set.

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 322

Epoch 1 2 4 6 8 12 13 18 23

Validation

Accuracy

60% 80% 83% 88% 89% 90% 91% 92% 93%

Table 1. Validation accuracy during training; no pretraining

 1 2 4 6 8

 12 13 18 23
Fig. 1. Visualizations of network at each training epoch; no pretraining. Classes from upper left (clockwise): tree frog, flamingo, hamburger, pool table

Epoch 1 2 6 7 8 14 20

Validation

Accuracy

59% 89% 91% 95% 96% 96% 93%

Table 2. Validation accuracy during training; pretrained on full ImageNet

 1 2 6 7

 8 14 20

Fig 2. Visualizations of network at each training epoch; pretrained on full ImageNet. Classes from upper left (clockwise): tree frog, flamingo, hamburger,

pool table

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 323

A. Trained from randomly initialized weights

Table 1 shows the validation accuracy during training at each
epoch. After the training set is passed through the network a
single time, the model performs classification on the validation
set with 60% accuracy. The model is fully trained after 23
epochs and achieves 93% accuracy at this time. Only epochs in
which the validation accuracy increases are shown. The
corresponding activation maximizations at each epoch are
shown in Fig. 1. Each image is divided into four sections, each
corresponding to one class. The classes, starting from the upper
left section in clockwise order are: tree frog, flamingo,
hamburger, and pool table.

To begin, it is clear that the visualizations at the early layers
of the network are not very informative. At this stage, the
convolutional filters have not been fully developed, nor is the
validation accuracy high enough to justify their efficacy. That
said, within a few epochs one can see some salient features
forming. In epoch 4, it appears that the tree frog class is
represented by a series of green lines, the flamingo class by some
pink shapes, and the hamburger class by similar brown shapes.
The pool table class is more strongly defined, with the
visualization showing a very prominent horizontal colored line
detector. Perhaps this shows an early understanding of the
discontinuity between the colored felt of a pool table and the
wooden rails. After epoch 12, the validation accuracy exceeds
90% and while the features do appear to increase in complexity,
they are not nearly representative of their corresponding classes.

Based on the results in the literature of activation
maximization applied to networks trained on the full ImageNet
dataset, one would expect the visualizations to more closely
resemble the original objects. Fig. 3 shows the visualizations of
such a network; in this case, activation maximization was
applied to the VGG network fully trained on the entire ImageNet
set and without any fine-tuning with the small four-class subset.
One can clearly see notions of the objects in these visualizations,
from frog eyes and flamingo necks to pool balls and hamburger
buns. It appears that the discriminatory power of a feature is
heavily dependent on the difficulty of the task: a simpler
classification task will yield simpler features even when the
constituent data is the same.

B. Pretrained with full ImageNet

This observation is further supported by the results in Fig. 2,
showing the visualizations of a network pretrained on the full
ImageNet dataset. The corresponding validation accuracies at
each epoch are shown in Table 2. In this instance, the network
converges to high validation accuracies sooner than previously.
This is to be expected, given the transferred knowledge already
in the network. The eventual maximum accuracy is higher,
reaching 96% by epoch 8. Again, given the study of transfer
learning in [14], this result is unsurprising. The features are also
more complex; but, yet again, the features are not as complex as
in Fig. 3. It may be argued that the tree frog features resemble
eyes by epoch 8, the flamingo shapes are more pronounced, and
the hamburger buns are more discernable. The pool table
features are much more apparent; in fact, the visualization in
epoch 14 does seem to show red pool balls lined up on blue or
green felt. Many deductions can be made from these results. For
one, it may be argued that the additional accuracy from

pretraining is most likely due to the added feature complexity.
Furthermore, these results still support the theory that
simplifying the classification task will result in less complex and
well-defined features.

One final modification was made in this experiment: a
visualization was shown for epoch 20, where the validation
accuracy slightly decreases. Given that the training loss at this
time was still decreasing, this suggests that the network may
have begun to overfit the data. It seems that even though the
complexity of the features is still increasing, the images
themselves are less clear. For example, it appears the tree frog
eyes that exist in epochs 8 and 14 begin to manifest themselves
in the visualizations of other classes by epoch 20. One
particularly notable case is in the bottom section of the flamingo
visualization. In addition, the pink neck shapes that define the
flamingo class appear in both the tree frog and pool table
visualizations. Perhaps this confusion of features is an
illustration of the mechanism behind which overfitting can
degrade the discriminative power of a network. More testing
would be required to fully investigate this phenomenon.

VI. SUMMARY AND FUTURE WORK

Deep visualization of feature evolution, especially in the
case of transfer learning, is a nascent approach to understanding
CNNs. In this paper, activation maximization was used to
experimentally show the following:

 Feature complexity increases with validation accuracy,
but can continue to increase even after accuracy saturates

 Discriminative classification power of a network is a
function of the number of classes; i.e. a CNN
automatically generates features of just enough
complexity to perform the task at hand, even when the
network is pretrained on a more challenging task

Fig. 3. Visualization of network trained on full ImageNet. Classes from

upper left (clockwise): tree frog, flamingo, hamburger, pool table

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 324

 Training on a more challenging task (e.g. larger number
of classes) will yield features that are more informative
and archetypal of the representative class members

 Unchecked feature complexity leads to feature confusion,
a potential precursor to overfitting

As discussed, additional testing into confusion of features
may lead to greater understanding of the ever-present caveat of
overfitting. Larger datasets with greater variety, such as
increasing the subset of classes used in ImageNet, are a logical
next step. Some modifications to the optimization algorithm for
the visualizations may also prove useful, such as more intricate
loss functions or regularizers. Freezing the fine-tuning of certain
layers during pretraining is discussed in [14] and supplying
visuals for this analysis may be enlightening. Finally, subjecting
other deep visualization techniques, such as inversion, to this
temporal analysis may enhance the information gleaned from
these methods.

ACKNOWLEDGMENT

The authors would like to acknowledge the Integrated Data
Driven Discovery in Earth and Astrophysical Sciences (IDEAS)
program at Northwestern University for support (NSF Research
Traineeship Grant 1450006).

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton. "Deep learning." Nature 521.7553
(2015): 436-444.

[2] D. Erhan, Y. Bengio, A. Courville, and P. Vincent. "Visualizing higher-
layer features of a deep network." University of Montreal 1341 (2009): 3.

[3] J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson.
"Understanding neural networks through deep visualization." arXiv
preprint arXiv:1506.06579 (2015).

[4] A. Mordvintsev, C. Olah, and M. Tyka. "Inceptionism: Going deeper into
neural networks." Google Research Blog. Retrieved June 20 (2015): 14.

[5] A. Nguyen, J. Yosinski, and J. Clune. "Multifaceted feature visualization:
Uncovering the different types of features learned by each neuron in deep
neural networks." arXiv preprint arXiv:1602.03616 (2016).

[6] A. Mahendran and A. Vedaldi. "Visualizing deep convolutional neural
networks using natural pre-images." International Journal of Computer
Vision 120.3 (2016): 233-255.

[7] A. Mahendran and A. Vedaldi. "Understanding deep image
representations by inverting them." Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 2015.

[8] A. Dosovitskiy and T. Brox. "Inverting visual representations with
convolutional networks." Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2016.

[9] M. Zeiler and R. Fergus. "Visualizing and understanding convolutional
networks." European conference on computer vision. Springer
International Publishing, 2014.

[10] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba. "Object
detectors emerge in deep scene cnns." arXiv preprint
arXiv:1412.6856 (2014).

[11] K. Simonyan, A. Vedaldi, and A. Zisserman. "Deep inside convolutional
networks: Visualising image classification models and saliency
maps." arXiv preprint arXiv:1312.6034 (2013).

[12] L. Zintgraf, T. Cohen, and M. Welling. "A new method to visualize deep
neural networks." arXiv preprint arXiv:1603.02518 (2016).

[13] W. Samek, A. Binder, G. Montavon, S. Bach, and K. Muller. "Evaluating
the visualization of what a deep neural network has learned." IEEE
Transactions on Neural Networks and Learning Systems (2016).

[14] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. "How transferable are
features in deep neural networks?." Advances in neural information
processing systems. 2014.

[15] O. Russakovsky, et al. "Imagenet large scale visual recognition
challenge." International Journal of Computer Vision 115.3 (2015): 211-
252.

[16] K. Simonyan and A. Zisserman. "Very deep convolutional networks for
large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014).

[17] J. Bergstra, et al. "Theano: A CPU and GPU math compiler in
Python." Proc. 9th Python in Science Conf. 2010.

[18] F. Chollet. "Keras." (2015).

[19] F. Tence. "Visualizing Deep Neural Networks Classes and
Features." Ankivil — Machine Learning Experiments. N.p., 7 July 2016.
Web. 27 Feb. 2017.

[20] F. Chollet. "How convolutional neural networks see the world." The
Keras Blog. N.p., 30 Jan. 2016. Web. 27 Feb. 2017.

[21] M. Zeiler. "ADADELTA: an adaptive learning rate method." arXiv
preprint arXiv:1212.5701 (2012).

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 325

