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Abstract—In this paper we propose a robust representation of
a digital signal based on error correction codes. For each frame
of the signal (/V successive samples) a binary decomposition, as
a (successive power 2) weighted sum of binary vectors, is first
considered. Then, each binary vector is projected into the set of
codewords of a corresponding block code.

The codes are designed so that their correction powers in-
creases inversely to the weight of the binary vectors since the
binary vectors with high weight are less sensitive to disturbance.
The corresponding representation (decoding) thus appears as a
form of signal quantization that can provide an interesting pro-
tection against noise and/or channel distorsion. Some applications
showing the utility of the proposed representation are given.

I. INTRODUCTION

Channel coding or error correcting coding [1] is one of
the basic building blocks of a digital communication system.
Since any transmission link, be it wire or wireless, is bound to
undergo distorsion and noise corruption, the capacity of codes
[2] to correct a part of the resulting errors is necessary for a
correct communication. In view of its efficiency, the principle
of channel coding has been used beyond the context of
robustness in signal transmission, as for instance in cooperative
networks [3], [4] and in secrecy coding (see [5] and references
therein) to name a few.

In this paper, we exploit the error correction coding for
signal representation.

Signal representation is one of the main chapters of signal
processing, with a very long and rich history. A basic approach
to this is to design a set of appropriate atoms allowing to
capture the useful information of the signal with a reduced
number of parameters. The purpose of this paper is not
to propose such sophisticated and efficient methods as the
well established time-scale, time-frequency analysis or the
more recent ones exploiting sparsity [6]. The fidelity of the
representation, with respect to some objective criterion or with
respect to the final end-receiver, is a common key point to all
these well elaborated approaches. Now, observe that when the
purpose of the representation is, for instance, signal detection
and identification or recognition, this fidelity requirement
becomes less stringent. If we consider such application context
(see [7] and [8] for the identification of audio signal) then we
allow the representation to deviate from the original signal.
However, the proposed representation is built upon the basic
principle of projection into a set of atoms. The atoms are
derived here, from the codewords of some error correction
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Fig. 1: General idea of our proposition.

codes, following the idea of [9]. More precisely, given a vector
of successive samples of the signal, we first consider its binary
decomposition as a (successive power 2) weighted sum of
binary vectors.

Then, each binary vector is projected into the set of code-
words of a corresponding block code. The codes are designed
so that their correction powers increases inversely to the
weight of the binary vectors since the binary vectors with high
weight are less sensitive to disturbance. The corresponding
representation thus appears as a form of signal quantization.
Hence, if the capacity of correction of the codes is high
enough, then the quantized signal can be recovered after noise
corruption by a simple decoding. The proposed method is
described in section II. The applications presented in section
III illustrate the interest of the method.

II. APPLYING CHANNEL CODING PRINCIPLES TO SIGNAL
A. Overview of our proposition

We consider a signal transmitted across a noisy channel. The
signal undergoes a channel coding at the transmitting part, and
the corresponding channel decoding at the receiving part, as
illustrated by Fig. 1.

If the signal is an audio signal, coding may be performed in
the frequency domain, where perceptual constraints are easier
to express. For this purpose, we will use a Modified Discrete
Cosine Transform (MDCT [10]), as will be detailled later.

Whatever the coding domain (time or frequency), the coding
scheme will differ from a classical channel coding by the
fact that the coded signal must be in the same space of
representation as the original signal. The principle is the
following. A quantized vector X of n time- or frequency-
coefficients of the input signal can be expressed as:

m—2
X = (=1 3" B2, (1)
=0

where each B; is a binary vector of length n and m is
the number of quantization bits. Using block coders, the
codewords of which are of length n, each vector B; will
be coded by the binary codeword D, that is the closest to
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Fig. 2: Complete overview of the channel-coded signal transmission
chain.
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Fig. 3: Principle of a block coded modulation.

itself. Hence, the coded version of X is given by the vector
of length n:

m—2
Xe=(-1)P 3" D2 )
=0

The coders will be chosen according to the principles of block
coded modulations [9], as explained later.

Finally, we consider the transmission chain represented by
Fig 2, which we will detail hereafter.

B. Block coded modulation (BCM)

Introduced in 1977 by Imai and Hirikawa [9], the BCM
allows to optimize jointly the coding and the modulation.

The principle of BCM is illustrated by Fig. 3. Considering
a M-ary modulation with M = 2™, this coding exploits the
fact that the most significant bits are less vulnerable to the
noise of the transmission channel. To transmit k; + ko +. ..+
k., bits, one codes each word of k; bits by a block code of
length n > k;. The resulting m x n binary matrix is then
transmitted as n M-ary symbols. The higher the bit weight,
the lower the error rate. Therefore several codes of decreasing
error-correction capabilities are used. Codes with higher error-
correction capabilities encode the lines of least significant bits,
while the lines of most significant bits are encoded by codes
with low error-correction capabilities. In other terms, k; <
ko < ... < kp.
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C. Frequency domain representation

For a time-frequency representation of the signals to be
coded, we will use the Modified Discrete Cosine Transform
(MDCT [10]). Considering a signal analysis by frames of
length N with 50% overlap, each frame is represented by
N/2 MDCT coefficients. The signal can be perfectly retrieved
through applying the inverse MDCT to each vector of N/2
MDCT coefficients and recombining the resulting time-domain
vectors of length N with 50% overlap, if the analysis and
synthesis windows are adequately chosen [11].

This choice of frequency transform is motivated by two
main reasons, related to modification of each MDCT vec-
tor [12] through channel coding. The first one is that it is
preferable to use a transform with an overlap in the synthesis,
to avoid discontinuities in the reconstructed signal, which are
audible as “clicks” in the case of audio signals. These dis-
continuities can appear if successive MDCT vectors undergo
different modifications. From this point of view, any transform
could have been used, provided the perfect reconstruction
be ensured. But the other advantage of the MDCT is the
following: after an analyzis-modification-synthesis process, if
one analyzes again the signal in the MDCT domain, each
MDCT vector appears exactly as it was after the modification.
In other terms, it is not modified by the frame-overlap of
the reconstruction. This property is not verified for analysis-
synthesis schemes with other transforms.

D. How to apply BCM to signal coefficients ?

Let (Ci(n, k;, ti))1gigm be a family of codes of length n,
where k; and t; denote the dimension of the i*" code and its
error-correction capacity, respectively.

A matrix of m codes from this family can be used to encode
n coefficients quantized with m bits per coefficient. Since
the coded signal must be in the same space of representation
as the original signal, the classical channel coding scheme
consisting in transforming a k-dimensional vector in an n-
dimensional one cannot be used here. Instead, each vector
X of n coefficients is transformed into another vector X,
of length n as described in subsection II-A, such that for
each bit weight ¢, the codeword D; is chosen in the codebook
of C;(n, ki, t;). Hence, coding here is similar to a decoding
process.

As indicated by Fig. 4, the probability of error on each
bit depends on the signal to noise ratio (SNR) and on the
bit weight. Due to their low error rates, some bits levels
(depending on the SNR) do not require any coding, while the
lowest levels require a high correction capacity, otherwise the
decoding will increase the error rate.

For a given SNR and a given bit weight, let P**f°"¢ be the
probability of error before decoding. The probability of having
k errors on n bits is given by:

Pbefore(k/n) _ (Z) (Pebe,fore)k(l N Pebefore)(n—k) 3)
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Fig. 4: Probability of error according to the bit weight, for various
SNRs. Results from simulations on 310000 samples quantized on
16 bits corrupted by an additive white Gaussian noise.

If the code has a correcting capacity ¢ > 0, the probability of
error after decoding is given by:

> PreIere(km)NEol(k/n),t >0 (4)
k=t+1

1
decod __
pecod _

where Nd¢cod(k /n) denotes the mean number of errors per
n bits after decoding when there was k errors on n before
decoding. Fig. 5 displays P?¢°°? versus the correcting capacity
t , for various bit weights and a SNR of 30 dB, for n = 31.
From these results, one can choose for each SNR and each
bit weight a code of which correcting capacity ensures that the
binary probability of error after decoding will be lower than

before decoding, leading to an increase of the SNR; 5.

III. APPLICATION TO SNR REDUCTION

We simulated the transmission of signals through the chain
represented in Fig. 2, where the channel adds a stationary
white Gaussian noise.

For each SNR and each bit weight, Eq. (2) provides the
probability of error after decoding for any correction capac-
ity t. Hence, drawing curves like those of Fig. 5 allows to
choose the appropriate correction capacity to reduce the error
rate.

In the following experiments, we used BCH encoders [13],
[14] of length n = 31, where the error-correction capacities
are in the set {1,2,3,5,7}. When the required minimum
correction capacity exceeds 7, we consider a zero-dimension
coding, consisting in replacing the n bits by n zeros for even
weights or n ones for odd weights, which zeroes the errors
on those bit weights. This alternance of zeros and ones was
found to reduce the effect of errors of lower bit levels (with
zero-dimension code) on higher bit levels.

ISBN 978-0-9928626-7-1 © EURASIP 2017

10°

.*********?

——weight2 After D |
O weight 2 Before D
—e— weight 9 After D
XX weight 9 Before D
weight 10 After D
weight 10 Before D
—fe— weight 12 After D
#*  weight 12 Before D
weight 13 After D[]
weight 13 Before D
—E&— weight 14 After D
+  weight 14 Before D

Probability of error after decoding

5 10 15
error correction capacity

Fig. 5: Probability of error on various bit levels, before and after
decoding, versus error-correction capacity of the code, for SNR of
30 dB.
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Fig. 6: Error-correction capacity required for each SNR and bit
weight.

Fig 6 and Table I indicate for each SNR and each bit
weight the minimum required error-correction capacity and
the dimension of the code we used, respectively.

A. Results for uniformly distributed samples

We randomly generated a signal of length n = 31, according
to the uniform law on the integer interval [—21%;2%% — 1], and
used it as input of the transmission chain represented in Fig 2,
without the MDCT and MDCT ! boxes. This operation was
repeated one million times for various SNRs on the channel.
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TABLE I: Code dimension chosen for each SNR;p and each bit
weight, to fulfill the minimal error correction capacities indicated by
Fig. 6.

Bit weight | 15 | 14 | 13 | 12 | 11 | 10 | 9 8|71 6.0
10 dB 31 6 0 0 0 0 0|00 0
20 dB 31 6 6 0 0 0 0|00 0
30 dB 31 | 11 6 6 0 0 0 ]0|O0 0
40 dB 31 | 21 | 16 | 11 6 6 000 0
50 dB 31126 | 21 | 16 | 16 | 11 6 [ 00 0
60 dB 31 | 31 |31 |26 |21 [ 16 | 11 | 6 | O 0
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Fig. 7: Signal-to-noise ratio (SNR) after decoding, versus SNR
before decoding. Results from 10° simulations of a signal of length
n = 31 generated according to the uniform law on the integer interval
[7215; 215 _ 1}

For each channel SNR, we computed the SNR of the
decoded signal and compared it to the channel SNR (SNR
without correction).

The results are represented in Fig. 7. In most cases, as
expected, choosing a set of coders ensuring the error-rate
reduction for each bit level leads to a clear enhancement of the
SNR. For lower SNRs (e.g. 10 dB) however, coding reduces
the SNR. The reason is that we chose not to code the 15" bit
level, which corresponds to the sign bit, although it is prone
to errors.

B. Application to an alarm signal

We applied the proposed coding scheme to an alarm of a
priority car. The signal has a duration of 10 s and is sampled
at 44100 Hz. Refering to Fig. 2, we considered two ways
of coding: (i) in the time domain, by blocks of 31 samples
(without the the MDCT and MDCT~! boxes); (ii) in the
frequency domain. In the latter case, the MDCT was computed
on 1024 coefficients, which were coded by blocks of 31, letting
the last coefficient uncoded.

The SNRs after decoding are represented for both cases in
Fig 8. The SNR after decoding is greater than the channel
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Fig. 8: Signal-to-noise ratio after decoding, versus SNRyp before
decoding. Results from simulation on a signal of priority car alarm

SNR in both cases (except for SNR=10 dB and 20 dB before
decoding, in the case of frequency domain coding). The SNR
for the time-domain coding is infinite for SNR of 20 dB or
greater.

For the frequency domain coding, the first and the last
windows of the MDCT are not coded, because coding these
windows affects the perfect reconstitution of the signal. The
non-corrected errors in the first and last windows of MDCT
explain why the SNR after decoding for time-domain coding
is greater than the SNR after decoding for frequency-domain
coding.

C. Distortion of the coded signal

For the previous example of a priority car alarm, and for a
channel SNR of 30 dB, Fig. 9 and 10 represent the spectrogram
of the original signal and the spectrogram of the signal coded

in the time domain, respectively.

The spectrogram structure of the time-domain quantized
signal of the priority car alarm is the same as the original
one, though more energetical in high frequencies. Coding in
time domain does not change much the perception of the
alarm, unlike coding in frequential domain, which introduces
a perceptible noise in the signal and modifies completely the
structure of the spectrogram. The audio files can be heard at
http://www.mi.parisdescartes.fr/%7Emahe/Recherche/RobustAudio

IV. CONCLUSION

We have proposed a quantization based on error correcting codes
that makes signals robust to the noise of a transmission channel.
This quantization exploits the principles of block coded modulations,
through applying codes of different correction capacities to each bit
level of a vector of time-domain or frequency-domain coefficients.

We have shown that choosing for each channel SNR and for each
bit weight a correction capacity ensuring an error rate lower with than
without channel decoding enhances the SNR of the received signal.
The counterpart of the proposed method is the distortion caused by
the coding process to the signal. However, for signals that do not
require a high fidelity to the original one, like an alarm signal, it
is possible to robustly code the signal while preserving its time-
frequency structure.
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Fig. 9: Spectrogram of a priority car alarm signal
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