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Abstract—In this paper, we present low-complexity uplink
detection algorithms in Massive MIMO systems. We treat the
uplink detection as an ill-posed problem and adopt Landweber
Method to solve it. In order to reduce the computational com-
plexity and increase the convergence rate, we optimize the relax
factor and propose improved Landweber Method with optimal
relax factor (ILM-O) algorithm. We also try to reduce the order
of Landweber Method by introducing a set of coefficients and
propose reduced order Landweber Method (ROLM) algorithm.
A analysis on the convergence and the complexity is provided.
Numerical results show that the proposed algorithms outperform
the existing algorithm significantly when the system scale is large.

I. INTRODUCTION

Mobile communications systems have undergone tremen-
dous development during the past decades. One of the key
technology in the air interface that has boosted the devel-
opment of mobile communication systems is Multiple-Input-
Multiple-Output (MIMO) systems. By using multiple anten-
nas, MIMO systems can significantly improve the data rates
and reliability of the communication links [1]. As an enhanced
version of MIMO, Massive MIMO systems which use tens to
hundreds of antennas at the base station (BS) can provide
excess degree of systems and improve both the spectrum
efficiency and energy efficiency significantly [2]–[6].

With the large number of antennas employed at the BS, one
of the key challenges of Massive MIMO is the low-complexity
detection in the uplink. Because of the excess degree of free-
dom in Massive MIMO systems, linear detection algorithms,
such as maximum ration combining (MRC), zero forcing (ZF)
and minimum mean square error (MMSE), can achieve near-
optimal performance [4]. ZF and MMSE generally perform
much better than MRC, but involves matrix inversion which
is computationally expensive and non-preferable in hardware
implementation [7], which is not taken into consideration in
previous works, e.g., [8] and [9].

Recently several papers have worked on the simplification
of MMSE detection in the uplink to avoid the inversion of
large matrices [10]–[14]. In [10], an approximate matrix ap-
proximation based on Neumann series expansion is proposed,
which is shown to reduce the complexity substantially, how-
ever, suffering from remarkable performance loss. Richardson
method is used in [11] to replace the matrix inversion which
help to reduce the complexity by an order. In [12], conjugate
gradient (CG) method based detection algorithm is proposed.
However, Richardson and CG method have many division

operations involved and converge slowly. The Gauss-Seidel
based approach in [13] performs well with limited number of
iterations but not suitable for parallel implementation since an
internal iteration is involved. In [14], a near-optimal detection
based on joint steepest descent and Jacobi method (referred
to as OJA here) is devised to speed up the convergence and
enable FPGA implementation.

In this work, we adopt Landweber method to design low-
complexity uplink detection algorithms. Landweber method
uses a series of matrix polynomials and is widely used in
solving ill-posed problems [15]. It is stable but converges
slowly. In order to reduce the uplink detection complexity and
increase the convergence rate, we optimize the relax factor
and propose improved Landweber Method with optimal relax
factor (ILM-O) algorithm. We also use detection matrices
with limited order to approximate those with high order and
propose reduced order Landweber Method (ROLM) algorithm.
The convergence and the complexity analysis are provided.
Numerical results show the proposed algorithms outperform
OJA in [14] when the system scales up.

The rest of this paper is organized as follows. The system
model is described in Section 2. In Section 3, the proposed
linear detection schemes based on Landweber Method are
introduced. In Section 4, the performance analysis is provided.
Numerical results are given in Section 5 and conclusions are
drawn in Section 6.

Notation: vectors and matrices are represented in bold
lowercase and capital letters, respectively; (•)T, (•)H, Tr(•)
denote the transpose and Hermitian transpose, trace of a
matrix, respectively; CN (θ,Σ) denotes the circular symmetric
complex Gaussian distribution with mean θ and covariance Σ;
IK denotes the K by K identity matrix; diag{a1, · · · , aK}
denotes a K by K diagonal matrix with diagonal entries given
by a1, · · · , aK ; E(•) denotes the expectation operation; ρr(A
denotes the spectrum radius of A;(a− b)+ , max{a− b, 0};
A† denotes the Moore-Penrose pseudo-inverse of A.

II. SYSTEM MODEL

Consider the uplink of a multi-user single cell massive
MIMO system, where the BS is equipped with N antennas
to serve K single-antenna users (N ≫ K).

The uplink received signal vector at the BS is given by

y = Hs+ n, (1)
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where s = [s1, . . . , sK ] ∼ CN (0, IK) with sk being the
transmitted signal of the k-th user; n ∼ CN (0, σ2

nIN ) is the
noise at the BS; H ∈ CN×K denotes the the Rayleigh fading
channel matrix, the elements of which are independently and
identically distributed (i.i.d) with zero mean and unit variance.

In order to detect the transmitted signal vector s with low
computational complexity, we consider linear detection, i.e.,
the estimate of s is computed as

ŝ = Wy, (2)

where W ∈ CK×N is the detection matrix.
Existing linear detection method, such as MRC with

WMRC = HH,

ZF with
WZF = (HHH)−1HH

and MMSE with

WMMSE = (HHH+ σ2
nIK)−1HH (3)

are shown to approach the optimal scheme when the system
scale becomes large. In practice, however, MRC suffers from
significant performance loss while ZF and MMSE involve in-
versions of large dimensional matrices which is not preferable
in hardware implementation.

In this work, we will design low-complexity uplink detec-
tion algorithms based on Landweber Method without involve-
ment of matrix inversion.

III. LINEAR DETECTION BASED ON LANDWEBER METHOD

Denote ya = Hs as the accurate received signal vector
without noise. Assuming H and y are perfectly known, we
observe from (1) that

E∥y − ya∥22 = Nσ2
n, (4)

In order to obtain the optimal estimate of s from the noise-
polluted vector y, (2) forms a so called linear ill-posed
problem [15]1, which can be solved by Landweber Method.

Landweber Method uses WLy as the estimate of s where

WL , a

T∑
j=0

(IK − aHHH)jHH, (5)

in which
0 < a <

1

ρr(HHH)

is a relax factor to control the convergence, and T is a termi-
nate factor to balance the estimation accuracy and the com-
putational complexity. The application of Landweber method
is usually based on iterations. The expression for the t-th
iteration is given by

ŝt = ŝt−1 + aHH(y −Hŝt−1), (6)

1It can also be approximately well-posed under high SNR.

with the initial estimate given by ŝ0 = aHHy. Lanweber
method is stable and works well with severe noise. However, it
converges slowly and consequently produces processing delay.

In the rest of this section, we will devise two low-complexity
detection algorithms based on Landweber Method with opti-
mized relax factor.

A. Improved Landweber Method with Optimized Relax Factor

According to [15], Landweber Method can be accelerated
using a different type of iteration by taking advantage of
the special structure of (5). The (t + 1)-th iteration has the
following expression:

Wt+1 = (2IK −WtH)Wt,

ŝt+1 = Wt+1y.
(7)

After T iterations, the above achieves the same results as
(6) with 2T − 1 iterations. Therefore, the convergence rate
is greatly improved. However, the optimal choice of a in (5)
remains unknown.

From (5), it can be seen that the computational complexity
of the detection is related to the spectrum radius of Aa ,
IK − aHHH. The matrix polynomial in (5) converges fast
with small value of ρr(Aa). Therefore, the optimal a can be
achieved by solving the following problem

a∗ = argmin ρr(Aa)

s.t. 0 < a <
1

ρr(HHH)
.

(8)

Proposition 1. Given the assumption in Section 2, the solution
to (8) is given by

a∗ =
1

N +K
. (9)

Proof: According to [16], in massive MIMO systems
when K and N becomes large with a fixed ratio η = K

N ,
the eigenvalue distribution of 1

NHHH converges to

f 1
N HHH(z) = (1−η−1)+δ(z)+

√
(z − z1)+(z2 − z)+

2πηz
, (10)

where z1 = (1−√
η)2 and z2 = (1 +

√
η)2.

Consider η < 1 which is the prevailing scenario. Then when
K and N are large, it is easy to achieve

ρr(Aa) ≈ max{|1− aNz2|, |1− aNz1)|}. (11)

It is apparent that z1 ≤ z2. Therefore, we can divide the set
of feasible a into the following three cases:

i) When a ≤ 1
Nz2

, ρr(Aa) = 1− aNz1. Therefore, solving
(8) gives a∗ = 1

Nz2
and min{ρr(Aa)} = z2−z1

z2
;

ii) When 1
Nz2

< a ≤ 1
Nz1

, there are two cases: either
aNz2 − 1 > 1 − aNz1 or the opposite. Both cases lead to
the solution of a∗ = 2

Nz1+Nz2
and min{ρr(Aa)} = z2−z1

z1+z2
;

iii) When a > 1
Nz1

, ρr(Aa) = aNz2−1. Therefore, solving
(8) gives a∗ = 1

Nz1
and min{ρr(A)} = z2−z1

z1
.

Comparing the minimum spectrum radius of Aa for the
above three cases, z2−z1

z1+z2
is the smallest. Therefore, the optimal

choice of a is a∗ = 2
Nz1+Nz2

= 1
N+K .
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TABLE I
IMPROVED LANDWEBER METHOD WITH OPTIMIZED RELAX FACTOR a

(ILM-O).

Steps Operations
Input: H, y, T .

1 a = 1
N+K

;
2 Let t = 0, Wt = aHH;
3 while t < T

3.1 Wt+1 = (2IK −WtH)Wt;
3.2 t← t+ 1;
end

4 ŝT = WTy;
5 Output ŝT .

The algorithm of the improved Landweber Method with
optimized relax factor is referred to as ILM-O, the details of
which is summarized in Table I.

B. Reduced Order Landweber Method

IML-O converges very fast, but it involves matrix product
which has comparatively higher complexity. In order to reduce
the complexity and enable fast convergence of (5), we intro-
duce coefficients to the matrix polynomials in (5) and set up
an optimization problem to reduce the order of WL.

To be specific, we try to use WL of order T to approximate
that of order L with T ≪ L by solving the following problem:

b∗ = arg min
b∈CT+1

E

∥∥∥∥∥∥a
T∑

j=0

bjA
j
aH

Hy − a

L∑
i=0

Ai
aH

Hy

∥∥∥∥∥∥
2

2

.

(12)
where b = [b0, . . . , bT ]

T.
The above optimization problem is convex over b. The

optimal value of b is given in Proposition 2.

Proposition 2. The optimal value of b is give by

b∗ = G†r, (13)

where

r =


L∑

i=0

ETr[Ai
aB]

...
L∑

i=0

ETr[Ai+T
a B]

 ,

G =

ETr[A
0
aB] · · · ETr[AT

aB]
...

. . .
...

ETr[AT
aB] · · · ETr[AT+T

a B]

 ,

(14)

and
B = HH(HHH + σ2

nIN )H (15)

The mathematical expectations in (14) are calculated as

ETr[Ai
aB] = K

∫
(1− az)i(z2 + zσ2

n)
1

N
f 1

N HHH

( z

N

)
dz.

(16)

TABLE II
REDUCED ORDER LANDWEBER METHOD (ROLM).

Steps Operations
Input: H, y, T .

1 a = 1
N+K

, compute b according to (13);
2 Let t = 0, C = HHH, ŝt = abtH

Hy;
3 while t < T

3.1 ŝt+1 = (1 + abt)ŝt − a2btCŝt;
3.3 t← t+ 1;
end

4 Output ŝT .

Proof: Taking the first order derivative of (12) with
respect to bj gives

T∑
i=0

biETr[Ai+j
a B]−

L∑
i=0

ETr[Aj+i
a B] = 0, j = 0, . . . , T.

(17)
Solving the above equation array gives (13).

Denote C = HHH, with the coefficient b, the (t + 1)-th
iteration becomes

ŝt+1 = ŝt + abt(IK − aC)ŝt

= (1 + abt)ŝt − a2btCŝt.
(18)

The reduced order Landweber method is summarized in
Table II, which is referred to as ROLM. Note that the proposed
method is different from that in [17] where the coefficients are
optimized to minimize the mean squared error of the channel
estimator, while in this work the coefficients are optimized to
reduce the order of the polynomials so that the iteration of
Landweber Method still holds. Moreover, the expectations in
the optimization problems in this work are different from [17]
and calculated in different ways.

IV. PERFORMANCE ANALYSIS

In this section, we carry out performance analysis of the
proposed linear detection algorithms in terms of convergence
and computational complexity.

According to Proposition 1, the spectrum radius is given by

min ρr(Aa) =
2
√
η

1 + η
.

Since 0 < η < 1, 1 + η > 2
√
η, we have 0 < ρr(Aa) < 1.

Therefore, the convergence of (5) is fulfilled and the same for
ROLM and ILM-O.

To analyze the computational complexity, we use the total
number of floating-point operations (FLOPs) involved in the
algorithms. Each real-valued multiplication or addition counts
for 1 FLOP, while one complex-valued multiplication and
addition counts for 6 FLOPs and 2 FLOPs, respectively. The
multiplication of an N × K and a K × M complex matrix
requires NM(8K − 2) FLOPs.

To capture the dominant terms, we only count matrix-matrix
and matrix-vector products in the following analysis. For ILM-
O, it involves two matrix multiplications in each iteration and
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TABLE III
COMPLEXITY COMPARISON OF THE PROPOSED ILM-O, ROLM

ALGORITHM AND OJA IN [14].

Algorithms Number of FLOPs
ILM-O (4TK2 − 2TK + 2K)N − 2TK2 − 2K

ROLM 2(K2 +K)N + (2T − 2)K2 − (2T + 2)K

OJA 2(K2 +K)N + (2T + 2)K2 − (2T + 6)K

one matrix-vector multiplication in step 4, which counts for a
total of (4TK2 − 2TK + 2K)N − 2TK2 − 2K FLOPs. For
ROLM, since the optimal value of b is calculated only once,
the computational cost can be omitted. In ROLM, one matrix
and one matrix-vector multiplication are required in step 2 and
1 matrix-vector product is involved in each iteration of step
3, which counts for a total of 2(K2 +K)N + (2T − 2)K2 −
(2T + 2)K.

The complexity comparison of ILM-O, ROLM and OJA in
[14] is summarized in Table III. It can be seen from Table III
that the complexity of ROLM is comparable to OJA in [14],
while ILM-O has the largest computational cost in most cases.

V. NUMERICAL RESULTS

In this section, we carry out Monte Carlo simulations to
evaluate the proposed ILM-O and ROLM in terms of bit
error rate (BER). We also compare the proposed algorithms
with the existing algorithm, i.e., MMSE, MRC and OJA
in [14] which is shown to outperform the other existing
schemes. Comprehensive evaluation and analysis remain for
future work.

In all the simulations, the number of antennas at the BS is
N = 100, while the number of users is K = 20, 40. In terms
of modulation, 64-ary Quadrature Amplitude Modulation (64-
QAM) is considered according to [14] with normalized power.
The signal to noise ratio (SNR) is defined as 1

σ2
n

.
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Fig. 1. Comparison between OJA in [14] and the proposed ILM-O,ROLM
algorithms, where N = 100, K = 20.
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Fig. 2. Comparison between OJA in [14] and the proposed ILM-O,ROLM
algorithms, where N = 100, K = 40

Figure 1 depicts the performance comparison of OJA in
[14], ILM-O and ROLM for T = 2, T = 4 when K = 20. As
can be seen in Figure 1, with increased SNR the BERs of all
three algorithms decrease. When T = 2, OJA in [14] performs
better the ILM-O and ROLM. However,when T = 4, the
proposed ILM-O outperforms OJA and ROLM significantly
with a gain over 2 dB in high SNR region. Although OJA
works better than ROLM, it involves division operations,
which is not preferable in hardware implementation. The
complexity of OJA is also slightly higher than ROLM. It can
be observed that ROLM reaches a error floor due to the fact
that the approximation made in ROLM dominates the BER
performance over noise in the high SNR region. Considering
most channel codes work well with a BER range of 10−1 to
10−2, all three algorithms show good performance.

As is shown in Figure 2, when K = 40 the proposed
algorithms show significant advantages over OJA. For T = 2,
ROLM performs better than OJA and ILM-O, due to the
optimized polynomial coefficients which enable ROLM to ap-
proximate the performance of higher order WL. When T = 4,
both the proposed algorithms outperform OJA significantly.
This is because Landweber Method is very stable and work
well in different scenarios. Compared with ROLM, ILM-O
performs better but with comparably heavier computation cost.

VI. CONCLUSIONS

In this paper, we have proposed two uplink detection
algorithms based on Landweber Method for Massive MIMO
systems. We have derived the optimal relax factor for the im-
proved Landweber Method and proposed ILM-O algorithms.
In order to reduce the computational complexity, reduced order
Landweber Method (ROLM) is proposed by approximate high
order detection matrix within limited iterations. Convergence
and computational complexity are analyzed. Numerical results
show that the proposed ILM-O and ROLM algorithms work
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well and outperform existing OJA algorithm in [14] when the
system scales up.
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