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Abstract—This paper presents an automatic system for de-
tection of bird species in field recordings. A sinusoidal detection
algorithm is employed to segment the acoustic scene into isolated
spectro-temporal segments. Each segment is represented as a tem-
poral sequence of frequencies of the detected sinusoid, referred
to as frequency track. Each bird species is represented by a set
of hidden Markov models (HMMs), each HMM modelling an
individual type of bird vocalisation element. These HMMs are
obtained in an unsupervised manner. The detection is based on a
likelihood ratio of the test utterance against the target bird species
and non-target background model. We explore on selection of
cohort for modelling the background model, z-norm and t-norm
score normalisation techniques and score compensation to deal
with outlier data. Experiments are performed using over 40 hours
of audio field recordings from 48 bird species plus an additional
16 hours of field recordings as impostor trials. Evaluations are
performed using detection error trade-off plots. The equal error
rate of 5% is achieved when impostor trials are non-target bird
species vocalisations and 1.2% when using field recordings which
do not contain bird vocalisations.
Index Terms: bird species detection, field recording, hidden
Markov model, HMM, score normalisation, cohort, outlier, vo-
calisation, element, unsupervised training, sinusoid detection,
sinusoidal modelling, frequency track

I. INTRODUCTION

Monitoring biodiversity can provide important information
on environmental health, migration routes and population sta-
tus of species for conservation planning and management. In
ornithology, this is traditionally conducted by point call counts
with field observers. However, point counts are prone to many
problems, for instance, the assessment is very limited, the
presence of observer may affect vocal activity of birds, as well
as it is expensive, tedious and time consuming. An attractive
alternative to the use of field observers is to automatically
detect bird species from recordings made in the field.

There have been a number of studies on automatic bird
species recognition and detection. Typically, the first stage
of an automatic system is to parse the acoustic signal into
isolated spectro-temporal segments. This is often performed
using an energy-based thresholding that requires an estimate
of noise level, e.g., [1], or by decomposition into sinusoidal
components [1], [2], [3], [4]. A variety of approaches to
feature representation of the spectro-temporal segments and
their modelling were explored. The use of features extracted
from entire frequency range, such as, conventional Mel-

frequency cepstral coefficients which were used in a number
of studies, e.g., [1], is problematic in the presence of other
concurrent vocalisations or noise. The use of a set of statistical
descriptors to characterise detected segment, as employed
in [1], [2], [5], may not capture well a more complex types of
vocalisation elements and may be susceptable to inaccuracies
in segmentation. In a case of tonal bird vocalisations, the use
of a sinusoidal detection for segmentation also offers a natural
way of representing the segment as a temporal sequence of
the frequencies of the detected sinusoid, which we refer to
as frequency track. This representation was employed in a
few earlier studies [1], [6] and also in our recent works [3],
[4], [7], [8], [9], [10]. Among the acoustic modelling ap-
proaches, the most commonly used are Gaussian mixture mod-
els (GMM) [1], [3], hidden Markov models (HMMs) [1], [4],
[6], [11], and decision trees [12]. Several studies focused on
detection of specific bird species [13], [14], [15]. Bardeli et al
[13] used an energy-based detection in pre-defined frequency
region and autocorrelation for detecting repetition patterns of
vocalisations of two endangered bird species. Digby et al [14]
presented an assessment of an automatic detection to manual
field surveys of a single species. They used autocorrelation
to detect repeating calls, then extracted a set of statistical
descriptors for each call and used these in a decision tree
classifier. The authors in [15] used cepstral coefficients and
GMM-based detector of a single bird species.

This paper presents an extension of our previous studies,
which focused on acoustic modelling and were performed
in the context of a closed-set bird species identification, to
detection of bird species from field recordings. We use the
sinusoidal detection algorithm introduced in [16] to parse
the acoustic signal into isolated time-frequency segments and
represent each segment using a temporal sequence of the fre-
quency track features [4]. We employ HMM-based modelling
of individual vocalisation elements, which are trained in an
unsupervised manner. This model was shown to reduce species
identification error rate by over 70% in comparison to the
use of a single HMM per bird species [10]. The detection
is performed using likelihood ratio on the target bird species
model and a background model. We explore ways of cohort
selection for the background model, weighting the likelihoods
and score normalisation techniques which have been success-
fully employed in speaker verification research, e.g., [17],
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[18], [19]. We also introduce a modified score calculation to
deal with the problem of data not seen during the training.
Experimental evaluations are performed using over 40 hours of
field recordings from 48 bird species from [20] plus 16 hours
of non-bird audio from ‘freefield1010’ dataset [21]. Results
are examined for case of impostor trials being vocalisations
of different bird species and non-bird audio.

II. AUTOMATIC BIRD SPECIES DETECTION SYSTEM

This section provides the description of individual com-
ponents of the presented bird species detection system. It
starts with a brief review of the approach we employed for
segmentation of the audio signal and extraction of frequency
track features and then follows with unsupervised HMM-based
modelling of individual vocalisation elements of each bird
species. These two components of the system were introduced
in our recent publications [4], [8], [10] where we refer the
reader to for further details. We then describe the methods
we employed for detection of bird species, including score
normalisation techniques.

A. Segmentation and estimation of frequency tracks

Audio signal is automatically parsed into isolated time-
frequency segments, each segment corresponding to a tem-
poral evolution of a sinusoidal component in the signal. The
detection of sinusoidal components is performed in the short-
time spectral domain using the method we introduced in [16].
This method considers each peak in the magnitude spectrum
of a signal frame as a potential sinusoidal component and
characterises it using a set of magnitude and phase spectral
features extracted around the peak. The detection is performed
based on the maximum likelihood criterion using trained mod-
els of sinusoidal signals and noise. The initial segmentation
obtained from the sinusoidal detection is further refined by
discarding very short segments and segments of a low energy,
which are considered to be accidental detection errors or other
background sinusoidal components.

B. HMM-based modelling of bird vocalisation elements

The modelling of vocalisations of each bird species is
performed using left-to-right hidden Markov models (HMMs).
A single HMM could be used to represent the entire set
of vocalisations of a given bird species. However, we have
demonstrated in our previous research [8], [10] that a better
approach is to obtain an individual model of each type of vo-
calisation element. This is not straightforward if the element-
level label information is not available and the set of element
vocalisations produced by each bird species is unknown. As
such, we first employed an unsupervised procedure to find a
set of vocalisation elements. This performed an agglomerative
hierarchical clustering of the detected segments based on a
similarity score between each pair of segments obtained using
a modified dynamic time warping (DTW) algorithm [7]. The
modified DTW allowed for a partial match between segments.
The similarity score for a given pair of segments was based
on the cumulative DTW distance, length of the matching

path and the ratio of the length of the matching path to the
total length of the path. The number of clusters, i.e., number
of vocalisation elements, could be estimated for each bird
species, for instance, based on assessing the change in a cluster
similarity score or cluster occupancy but in this paper it was
set to a fixed value for all bird species. An additional cluster
referred to as ‘remainder’ was used to cover segments which
were not assigned to any of the element vocalisation clusters.
The above provided an initial element-level label information
for each detected segment which was used to estimate initial
parameters of each element HMM using conventional Baum-
Welch algorithm. This was followed with an iterative training
procedure which consisted of an update of the element-level
label information based on the current trained models and then
Baum-Welch reestimation of the models. Further details of this
procedure are provided in [8], [10]. As the obtained clusters of
vocalisation patterns are expected to be homogenous, the state
output probability density function (pdf) of each individual
element HMM consists only of a single Gaussian distribution.
In addition to individual element HMMs, we also have a
single ‘remainder’ HMM whose state pdf consists of several
Gaussian mixture components as this model is to cover a
variety of remaining segments. An example of the state output
pdf of nine trained individual element HMMs of a given bird
species is depicted in Figure 1. It can be seen that each model
provides a distinctive pattern.
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Fig. 1. An example of the mean values of the state output Gaussian pdf,
modelling frequency track features, for nine trained element HMMs of bird
species Northern Cardinal. The x- and y-axis denotes the HMM state and
frequency index, respectively.

C. Detection of bird species

The objective in bird species detection is to determine
whether a particular bird species of interest b is present in
a given utterance of recording.

The training stage provides the model λb for the target
bird species. For a given test utterance, the segmentation and
frequency track feature extraction step provides a set of R
detected segments O={Os}Rs=1. Each segment s is represented
by a sequence of features Os=(os(1), . . . ,os(Ts)), where
Ts is the number of frames in the segment. Each detected
segment s is considered as an isolated vocalisation element. An
approximation of the probability p(Os|λb) is obtained using
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the Viterbi algorithm on each individual element model, with
the highest one being used.

The general approach used in detection is to base the
decision on the likelihood ratio of the test utterance O against
the target bird species model λb and the non-target model λb̄,
i.e., p(O|λb)/p(O|λb̄). The bird species b is then detected if
the ratio, which we refer to as score, is above a given threshold
θ, and not detected otherwise. The decision threshold θ is set
to adjust the trade-off between rejecting the true target bird
species utterances, i.e., false rejection errors, and accepting
non-target bird species utterances, i.e., false acceptance errors.

In order the decision threshold to be independent of the
utterance length, the likelihood terms p(O|λ) need to be
normalised for the number of frames. As our utterance consists
of a number of segments Os, this could be performed in two
ways. We have observed that better results are obtained by
accumulating the likelihood of segments in the utterance and
then normalising the total likelihood by the total number of
frames, i.e., [

∏
s p(Os|λ)]

1∑
s Ts , as opposed to using the mean

likelihood of each segment.
While the calculation of the likelihood p(O|λb) is clearly

defined, as the model λb is available from the training stage, it
is less so for the likelihood p(O|λb̄). The model λb̄ is usually
referred to as ‘world’ or ‘background’ model.

1) ‘Background’ modelling and dealing with outliers:
Ideally, a large amount of data covering well all the possible
vocalisations of non-target bird species and all other sounds in
the real world should be used. A single ‘background’ model
can be built using all the non-target bird species sounds. An
alternative approach, also adopted in this paper, is to use a
collection or cohort of background models. The score for the
utterance O and target bird species b, denoted as Λ(O;λb), is
then calculated in the log domain as

Λ(O;λb) = log p(O|λb)γ − log
( 1

Ncoh

∑
c∈coh

p(O|λc)γ
)

(1)

where the likelihood terms p(O|λ) are length-normalised as
mentioned above, and Ncoh is the number of models used in
the cohort. We have also explored the use of a scaling factor γ
for the likelihoods, which was employed in [19] for speaker
verification.

However well we attempt to model background sounds,
there may become situations when an impostor sound is not
well covered by the background model. Such utterance of
recording could be seen as an outlier. The likelihood of such
utterance on each of the models would then be a small random
value. This could result in the score becoming a large random
number and causing false acceptance error. Various ways could
be used to tackle this problem, e.g., [22]. Here, we propose
to modify the score calculation to

Λ(O;λb) = Λ(O;λb)−Kf(p(O|λb)) (2)

where f(·) is a sigmoid function of the form f(x) = 1/(1 +
exp(−β(log p(O|λb) − α))). The parameter α and β defines
the shift and slope of the function, respectively. Suitable values

could be set based on examining the distribution of values
of log p(O|λb) on training data. The value K represents the
penalty to be attributed to the score for an outlier data.

2) Score normalisation: The aim of score normalisation
is to normalise the distribution of the scores. We em-
ployed zero-normalisation, z-norm, and test-normalisation, t-
norm, score normalisation techniques. These have been ex-
tensively employed in the area of automatic speaker detec-
tion/verification [18]. The z-norm and t-norm both use the
same score normalisation formula

Λnorm(O;λb) =
Λ(O;λb)− µnorm

σnorm
(3)

where µnorm and σnorm are the mean and standard deviation
normalisation parameters, respectively. However, they differ
in how the normalisation parameters are computed. In the z-
norm, the µnorm and σnorm parameters are estimated during
the training stage based on a set of scores obtained when
using the target bird species model against a set of impostor
utterances. The t-norm is performed during the testing stage
– the test utterance O is scored against a cohort of non-target
(impostor) models to obtain a set of impostor scores, which
are then used to estimate the µnorm and σnorm as the sample
mean and standard deviation of the log-likelihood ratio scores.

III. EXPERIMENTAL EVALUATIONS

A. Experimental setup

Experimental evaluations were performed using over 40
hours of field recordings from the Borror Laboratory of
Bioacoustics [20] and nearly 16 hours recordings from
‘freefield1010’ collection used in the Bird Audio Detection
challenge [21]. The Borror collection contains recordings of
bird vocalisations made in real world natural habitats of birds,
collected over several decades, mostly in the western United
States. There are several files for each bird species, each file is
typically between one to ten minutes long. For each recording,
there is a label indicating the single bird species vocalising
but there is no label information that would indicate the
start and end times of each bird vocalisation. Each recording
was split into training and testing part in proportion of two
to one, respectively. The ‘freefield1010’ collection contains
audio with ‘field-recording’ tag selected from the Freesound
audio archive. From these data, only recordings marked as not
containing bird vocalisations were used as impostor trials. The
data used for testing was further split into utterances, where
each utterance consisted of signal containing approximately 1
second of detected segments.

From the Borror collection, data from a set of randomly
chosen 48 bird species were used. From this set, a sub-set of
18 bird species was used for training the ‘background’ model,
and another sub-set of 6 bird species was used as impostor
utterances for calculation of the statistics used in the z-norm
score normalisation. The remaining sub-set of 24 bird species
was used in a leave-one-out methodology – at a time, one
bird species was used as the target bird species and data of
the other 23 bird species were used for impostor trials.
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Each detected segment was characterised by a sequence
of 3-dimensional frequency track features, containing the
frequency value of the detected sinusoid and its temporal
derivatives obtained as in [23]. The parameter setup used
for HMM-based modelling of vocalisations was based on our
previous research outcomes [8], [10]. We used a left-to-right
HMMs with 13 states and no skip allowed. The overall model
of each bird species consisted of a set of 70 individual element
HMMs using a single Gaussian per state plus an additional
single general HMM having 10 components Gaussian mixture
model per state.

Performance is evaluated using detection error trade-off
plots, which have been used as the main performance measure
for speaker verification tasks in NIST evaluations [24].

B. Experimental results

The first set of presented experimental results is obtained
using the Borror dataset only. We analyse the effect of cohort
selection and different schemes of score normalisation. Fig-
ure 2 presents results achieved by using different set of non-
target bird species models in the cohort in Eq. 1 to represent
the ‘background’ model. We can see that the use of all bird
species, i.e., no cohort selection, performed worse then using
unconstrained cohort selection with only few models achieving
the highest likelihood. The performance when using only the
best 1 model, which is not shown for clarity of the figure,
was slightly worse than the use of the best 3 models. Next,
Figure 3 presents results achieved when using different weight
γ of the likelihoods in Eq. 1 for the score calculation. These
experiments were performed with using all the models in the
cohort. It can be seen that a suitable choice of the weight
parameter γ can provide similar performance to the use of
cohort selection. Finally, Figure 4 presents results obtained
using the z-norm and t-norm score normalisation techniques
again when all models in the cohort were used. It can be
seen that the use of z-norm gives worse performance than the
baseline. The t-norm, when all models are used for calculating
the normalisation parameters, performs also poorly but with
the use of only the best 3 models it provides improvement
over the baseline model and achieves performance similar to
that obtained using the cohort selection or likelihood weighting
schemes. A combination of cohort selection and score weight-
ing and normalisation did not provide further improvement.

The next set of experiments differ from the above only in the
set of impostor trials used – instead of using the recordings of
non-target bird species from the Borror dataset, now non-bird
data from the ‘freefield1010’ collection are used as impostor
trials. The model using likelihood weighting with γ=6 was
used. We explore here also the effect of the outlier score com-
pensation as in Eq. 2. Results are presented in Figure 5. It can
be seen that while the use of bird vocalisations of other species
as impostor trials, as in the first set of experimental evaluations
above, gave the equal error rate (EER) just under 5% (red
dotted line), the same system but with non-bird impostor trials
(black dotted line) performs considerably worse, with EER
increased to 12.5%. The other lines in the figure show the
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Fig. 2. Bird species detection results obtained using different unconstrained
cohort selection.
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Fig. 3. Bird species detection results obtained using different likelihood
weighting parameter γ when no cohort selection was used.

performance when employing the outlier score compensation.
It can be seen that the performance improves by an order. The
EER is now reduced to only around 1.2%. This demonstrates
that the vocalisations of other non-target bird species present
a considerably bigger challenge to the detection system than
non-bird sounds. Note that the use of this compensation had
negligible effect on results when bird vocalisations of other
bird species from the Borror dataset were used as impostors.

In terms of employing the presented detection system for a
long-term automatic acoustic monitoring of bird species, the
impostor trials in the ‘freefield1010’ collection consisted of
nearly 16 hours of recordings. Out of this, the sinusoidal detec-
tion algorithm found around 98 mins of potential vocalisation
segments. As such, using the presented detection system with,
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Fig. 4. Bird species detection results obtained using different score normali-
sation techniques.
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for instance, 1% false acceptance error rate setup would mean
that less than 1 minute of audio would be incorrectly detected
as target bird species in the total of 16 hours of continuous field
recordings, while only 1.6% of target bird species vocalisations
would be missed.
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Fig. 5. Bird species detection results obtained using the system with likelihood
weighting (γ=6) and employing outlier score compensation, when using the
‘freefield1010’ data as impostor trials.

IV. CONCLUSION

This paper presented an automatic bird species detection
system. It employed a method for detection of sinusoidal
components to decompose the acoustic scene into isolated
time-frequency segments. Each segment was represented as
a temporal sequence of 3-dimensional vectors, consisting of
the detected sinusoid frequency and its temporal derivatives.
Each bird species was represented using a set of HMMs, each
HMM modelling individual type of vocalisation elements. The
training of element HMMs was performed in an unsupervised
manner. The detection was based on the likelihood ratio of
the target model to background model. We explored the effect
of cohort selection, likelihood weighting, t-norm and z-norm
score normalisation, and outlier compensation on the detection
performance. The first set of experiments was performed using
over 40 hours of field recordings of bird vocalisations, with
impostor trials being non-target bird species vocalisations.
Except the z-norm, all the above score calculation techniques
showed similar performance when using a suitable parameter
setup. The second set of experiments was performed using
impostor trials from field recordings not containing bird vo-
calisations. The equal error rate (EER) of 5% was achieved
when impostors are other bird species vocalisations and 1.2%
when using field recordings not containing bird vocalisations.
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[3] P. Jančovič and M. Köküer, “Automatic detection and recognition
of tonal bird sounds in noisy environments,” EURASIP Journal on
Advances in Signal Processing, pp. 1–10, 2011.
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[7] P. Jančovič, M. Köküer, M. Zakeri, and M. Russell, “Unsupervised
discovery of acoustic patterns in bird vocalisations employing DTW
and clustering,” European Signal Processing Conference (EUSIPCO),
Marrakech, Morocco, Sept. 2013.
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