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ABSTRACT
A framework for reliable seperation of a low-rank subspace
from grossly corrupted multi-dimensional signals is pivotal in
modern signal processing applications. Current methods fall
short of this separation either due to the radical simplification
or the drastic transformation of data. This has motivated us
to propose two new robust low-rank tensor models: Tensor
Orthonormal Robust PCA (TORCPA) and Tensor Robust CP
Decomposition (TRCPD). They seek Tucker and CP decom-
position of a tensor respectively with lp norm regularisation.
We compare our methods with state-of-the-art low-rank mod-
els on both synthetic and real-world data. Experimental re-
sults indicate that the proposed methods are faster and more
accurate than the methods they compared to.

Index Terms— Tensor Decomposition, Robust Principal
Component Analysis, Tucker, CANDECOMP/PARAFAC

1. INTRODUCTION

In many real-world applications, input data are naturally rep-
resentd by tensors (i.e., multi-dimensional arrays). Tradi-
tionally, such data would require vectorising before process-
ing and thus destroy the inherent higher-order interactions.
As a result, novel models must be developed to preserve the
multilinear structure when extracting the hidden and evolving
trends in such data. Typical tensor data are video clips, color
images, multi-channel EEG records, etc.

In practice, important information usually lie in a (multi-
linear) low-dimensional space whose dimensionality is much
lower dimensional space than observations.This is the essence
of low-rank modelling. In this paper, we focus on the problem
of recovering a low-dimensional multilinear structure from
tensor data corrupted by gross corruptions.

Given a tensor L ∈ Rd1×···×dN , its tensor rank [1] is
defined by the smallest r such that L =

∑r
i=1 a

(1)
i ◦ · · · ◦

a
(N)
i , where ◦ denotes outer products among some Nr vec-

tors a
(1)
i , · · · ,a(N)

i , 1 ≤ i ≤ r. As such, robust low-rank
tensor modelling seeks a decomposition X = L + S for
an N th-order tensor X ∈ Rd1×···×dN , where L has a low
tensor rank and S is sparse. However, the tensor rank is
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usually intractable [2]. A common adjustment [3–5] is to
use a convex combination of the n-ranks of L, that is γ =∑N
i=1 αiranki(L), where αi ≥ 0,

∑N
i=1 αi = 1 and ranki(L)

is the the column rank of the mode-i matricisation [6] of L .
It is, therefore, natural to obtain the decomposition by solving
optimisation problem (1)

min
L,S

γ+λ‖E‖0 s.t. γ =
N∑
i=1

αiranki(L), X = L+S, (1)

where ‖S‖0 is the l0 norm of the vectorisation of S and λ is
a weighting parameter.

Here we present two novel robust tensor methods based
on Tucker and CP decomposition that recover the latent low-
rank component from noisy observations by relaxing (1),
which is NP-hard. In section 2, we review relevant literature
on matrix and tensor algorithms. In section 3, we explain our
proposed tensor methods in detail. In section 4, we demon-
strate the advantages of our models on both synthetic data
and a real-world dataset. Finally, in section 5, we summarise
our new models and point out possible future improvements.

2. RELATED WORK

RSTD [7] is a direct multi-linear extension of matrix principal
component pursuit (PCP) [8]. It approximates (1) by replac-
ing ranki(L) and ‖S‖0 with convex surrogates ‖L(i)‖∗ and
‖S‖1 respectively, where ‖L(i)‖∗ is the nuclear norm of the
mode-imatricisation ofL and ‖S‖1 is the l1 norm of the vec-
torisation of S. As a result, it solves the following alternative
objective

min
L,S

N∑
i=1

αi‖L(i)‖∗ + λ‖S‖1 s.t. X = L+ S. (2)

An ALM solver can be found in [9]. It is also worth noting
that under certain conditions RSTD is guaranteed to exactly
recover the low-rank component [10].

Much recent research on subspace analysis for the matrix
case has direct applicability to tensor data. The costly singu-
lar value decomposition step in classical PCP prohibits large-
scale analysis. A general approach to mitigate this issue is to
look for a factorisation of the low rank component A. OR-
PCA [11] uses a linear combination of the active subspace,
A = UV , UTU = I , where bilinear factors U ∈ Rm×k
and V ∈ Rk×n are the principal components and the com-
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bination coefficients respectively and k is an upper bound of
rank(A).

3. ROBUST LOW-RANK TENSOR MODELLING

3.1. Notation

We first introduce some notations used throughout the pa-
per. Lowercase latin and greek letters denote scalars, e.g. r, γ.
Bold lowercase latin letters denote vectors, e.g. a. Bold up-
percase latin letters denote matrices, e.g. A. Bold uppercase
calligraphic latin letters denote tensors, e.g. L. Bold upper-
case greek letters denote operators on tensors and matrices,
e.g. Θ(S), Φ(U). 〈A,B〉 represents tr(ATB). ‖A‖F is
the Frobenius norm. A � B denotes the Khatri-Rao prod-
uct between matrices A and B and X ×i U is the i-mode
product [6].

3.2. Soft and hard thresholding operators

For fixedX ∈ Rd1×···×dN , the optimal analytical solution for
minY κ‖Y‖1+ 1

2‖X−Y‖
2
F is given by the soft thresholding

operation Θκ(X ), where
Θκ(X )ι1···ιN = (X ι1···ιN − κ)+ − (−X ι1···ιNκ)+. (3)

And for fixed X ∈ Rm×n, the optimal analytical solu-
tion for minY κ‖X‖∗ + 1

2‖X − Y ‖2F is given by the hard
thresholding operation Φκ(X), where

Φκ(X) = UΘκ(S)V
T , (4)

for singular value decomposition X = USV T .

3.3. Tensor Orthonormal Robust PCA

Generalisation of ORPCA to tensors corresponds to the fol-
lowing factorisation of the low-rank component L:
L = V×1U1×· · ·×NUN ≡ V×Ni=1Ui, U

T
i Ui = I, (5)

which is exactly the HOSVD [12] of L and the following
relationship holds

‖L(i)‖∗ = ‖V(i)‖∗. (6)

Based on the above, (2) can be re-written as

min
V,S

N∑
i=1

αi‖V(i)‖∗ + λ‖S‖1,

s.t. X = V ×Ni=1 Ui + S, UT
i Ui = I, 1 ≤ i ≤ N.

(7)

To separate variables, we make the substitution V(i) =
Ji, to arrive at an equivalent problem:

min
Ji,S

N∑
i=1

αi‖Ji‖∗ + λ‖S‖1,

s.t. X = V ×Ni=1 Ui + S, UT
i Ui = I,

V(i) = Ji, 1 ≤ i ≤ N.

(8)

To apply ADMM, the augmented Lagrangian of (8) is
constructed first:

l(Ji,V ,S,Ui,Y ,Zi) =
N∑
i=1

αi‖Ji‖∗ + λ‖S‖1

+ 〈X − V ×Ni=1 Ui − S,Y〉+
N∑
i=1

〈V(i) − Ji,Zi〉

+
µ

2
‖X − V ×Ni=1 Ui − S‖2F +

N∑
i=1

µ

2
‖V(i) − Ji‖2F ,

(9)

where UT
i Ui = I has not been incorporated.

Ji is updated by the minimiser of l(Ji):

Ji = argmin
Ji

αiµ
−1‖Ji‖∗ +

1

2
‖Ji − (V(i) +

1

µ
Zi)‖2F

= Φαiµ−1(V(i) +
1

µ
Zi)

(10)

V is updated by the minimiser of l(V):
V = argmin

V
〈V ,−(µ(X − S) +Y)×Ni=1 U

T
i 〉

+
N∑
i=1

〈V −J i,Zi〉+
µ

2
‖V‖2F +

N∑
i=1

µ

2
‖V −J i‖2F ,

(11)

where we have used the fact that UT
i Ui = I , the Frobenius

norm is invariant under rotations and J i,Zi are the inverse
of mode-i matricisations, Ji,Zi respectively. To obtain V ,
setting the gradient of (11) to zero gives:

V =
1

N + 1
((X −S +

1

µ
Y)×Ni=1 U

T
i +

N∑
i=1

(J i−
1

µ
Zi)).

(12)

S is updated by the minimiser of l(S):
S =argmin

S
λµ−1‖S‖1

+
1

2
‖S − (X − V ×Ni=1 Ui +

1

µ
Y)‖2F

=Θλµ−1(X − V ×Ni=1 Ui +
1

µ
Y).

(13)

Ui is updated by the minimiser of l(Ui) subject to
UT
i Ui = I:

Ui =argmin
Ui

1

2
‖X (i) − S(i) +

1

µ
Y(i) −UiBi‖2F ,

where Bi = (V ×i−1j=1 Uj ×Nj=i+1 Uj)(i).

(14)

If we have the following SVD

(X (i) − S(i) +
1

µ
Y(i))B

T
i = CiDiV

T
i , (15)

then according to the Reduced Rank Procrustes Theorem [13],
the solution is given by

Ui = CiV
T
i . (16)

The complete algorithm is presented in Algorithm 1.
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Algorithm 1 ADMM solver for TORPCA
Input: Observation X , parameter λ > 0, scaling κ > 1,

weights αi, ranks ki
1: Initialise: Ji = Zi = 0, S = Y = 0, V = 0, Ui =

first ki left singular vectors of X (i), µ > 0
2: while not converged do
3: for i ∈ {1, 2, · · · , N} do
4: Ji = Φαiµ−1(V(i) +

1
µZi)

5: end for
6: V = 1

N+1 ((X − S + 1
µY) ×

N
i=1 U

T
i +

∑N
i=1(J i −

1
µZi))

7: S = Θλµ−1(X − V ×Ni=1 Ui +
1
µY)

8: for i ∈ {1, 2, · · · , N} do
9: Bi = (V ×i−1j=1 Uj ×Nj=i+1 Uj)(i)

10: CiDiV
T
i = (X (i) − S(i) +

1
µY(i))B

T
i

11: Ui = CiV
T
i

12: end for
13: Y = Y + µ(X − V ×Ni=1 Ui − S)
14: for i ∈ {1, 2, · · · , N} do
15: Zi = Zi + µ(V(i) − Ji)
16: end for
17: µ = µ× κ
18: end while
Return: V ,S,Ui

3.4. Tensor robust CP decomposition

Let U (i) = [a
(i)
1 ,a

(i)
2 , · · · ,a(i)

r ], then we can expressL com-
pactly as L = U (1) ◦U (2) ◦ · · · ◦U (N). In particular, it can
be shown that ranki(L) ≤ rank(Ui), for 1 ≤ i ≤ N . So, it is
beneficial to solve the following objective

min
Ui,S

N∑
i=1

αi‖Ui‖∗+λ‖S‖1, X = U1 ◦U2 ◦ · · · ◦UN +S.

(17)
Again, we make the substitution Ui = Ji before performing
ADMM, which leads to the following problem

min
Ji,S

N∑
i=1

αi‖Ji‖∗ + λ‖S‖1

s.t. X = U1 ◦ · · · ◦UN + S, Ui = Ji, 1 ≤ i ≤ N.

(18)

The corresponding augmented Lagrangian is

l(Ji,Ui,S,Y ,Zi) =
N∑
i=1

αi‖Ji‖∗ + λ‖S‖1

+ 〈X −U1 ◦ · · · ◦UN − S,Y〉+
N∑
i=1

〈Ui − Ji,Zi〉

+
µ

2
‖X −U1 ◦ · · · ◦UN − S‖2F +

N∑
i=1

µ

2
‖Ui − Ji‖2F .

(19)

Algorithm 2 ADMM solver for TRCPD
Input: Observation X , parameter λ > 0, scaling κ > 1,

weights αi, rank k
1: Initialise: Ji = Ui = rand, S = Y = 0, Zi = 0, µ > 0
2: while not converged do
3: for i ∈ {1, 2, · · · , N} do
4: Ji = Φαiµ−1(Ui +

1
µZi)

5: Ũi = (UN � · · · �Ui+1 �Ui−1 � · · · �U1)
T

6: Ui = ((X (i) − S(i) + 1
µY(i))Ũ

T
i + Ji −

1
µZi)(ŨiŨ

T
i + I)−1

7: end for
8: S = Θλµ−1(X −U1 ◦ · · · ◦UN + 1

µY)
9: Y = Y + µ(X −U1 ◦ · · · ◦UN − S)

10: for i ∈ {1, 2, · · · , N} do
11: Zi = Zi + µ(Ui − Ji)
12: end for
13: µ = µ× κ
14: end while
Return: Ui,S

Ji is updated by the minimiser of l(Ji):

Ji = argmin
Ji

αiµ
−1‖Ji‖∗ +

1

2
‖Ji − (Ui +

1

µ
Zi)‖2F

= Φαiµ−1(Ui +
1

µ
Zi).

(20)

Ui is updated by the minimiser of l(Ui):

Ui = argmin
Ui

〈X (i) −UiŨi − S(i),Y(i)〉+ 〈Ui − Ji,Zi〉

+
µ

2
‖X (i) −UiŨi − S(i)‖2F +

µ

2
‖Ui − Ji‖2F ,

where Ũi = (UN � · · · �Ui+1 �Ui−1 � · · · �U1)
T

(21)

Setting the derivative of (21) to zero gives:

Ui =((X (i) − S(i) +
1

µ
Y(i))Ũ

T
i

+ Ji −
1

µ
Zi)(ŨiŨ

T
i + I)−1.

(22)

S is updated by the minimiser of l(S):
S = argmin

S
λµ−1‖S‖1

+
1

2
‖S − (X −U1 ◦ · · · ◦UN ) +

1

µ
Y‖2F

= Θλµ−1(X −U1 ◦ · · · ◦UN + µ−1Y).

(23)

The complete algorithm is described in Algorithm 2.

3.5. Complexity and convergence

For ease of exposition, we assume that d1, · · · , dN = ζ.
For TORPCA, the most expansive calculation in each itera-
tion is the i-mode product which has a time complexity of
O(NrζN ). For TRCPD, the dominant term is the chain of
matrix outer products which costs O(NrζN ). Note that both
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methods have lower complexity than RSTD whose complex-
ity is O(NζN+1) due to SVD if r < ζ.

Although both of our proposed tensor methods are non-
convex, we have empirically found that the warm initialisa-
tion of using the first ki left singular vectors of X (i) for Ui

works well for TORPCA and uniform initialisation of Ui, 1 ≤
i ≤ k from [0, 1] suffices for TRCPD (see Section 4).

4. EXPERIMENTAL RESULTS

4.1. Implementation details

For stopping criteria, we use one of the KKT opimality condi-
tions, ‖X−L−S‖F

‖X‖F < δ and we have set δ = 10−7. The initial
value of µ is set to 10−3, which is geometrically increased by
a factor of κ = 1.2 up to 109. The weights αi are assumed
equal.

4.2. Simulation

We first evaluate the performance of all algorithms on syn-
thetic data. A low-rank tensor L ∈ R100×100×100 is gener-
ated viaL = U1 ◦U2 ◦U3, where elements of U1,U2,U3 ∈
R100×8 are independently sampled from the standard Gaus-
sian distribution. The variance of L is normalised to 1 af-
terwards. A sparse tensor S ∈ R100×100×100 is constructed
by uniform sampling from [−10, 10]. Then only 20% of the
elements are kept, with others set to zero.
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Fig. 1. Relative error from all algorithms for a range of λ.

Each tensor algorithm takesX = L+S as input, whereas
matrix algorithms take mode-1 matricisation of X as input.
Since rank(L) ≤ 8, the rank k in TRCPD is set to 8 and the
ranks ki in TORPCA are all set to 8 because ranki(L) ≤ 8.
The relative error ‖L−L̃‖F‖L‖F averaged over 5 trials against λ is

plotted for the optimal L̃ in each algorithm in Fig 1. The total
execution time for each algorithm versus λ is shown in Fig 2.

It is clear that tensor methods are superior to matrix-based
methods. Particularly, TRCPD performs the best and TOR-
PCA is also better than RSTD. Both TRCPD and TORPCA
are stable in terms of λ whereas RSTD depends on tuning
heavily. The execution time confirms our complexity anal-
ysis. Both of TORCPA and TRCPD are significantly faster
than RSTD.
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Fig. 2. Running time of all algorithms as λ varies.

Senario Algorithm λ ∈
[10−4, 10−1]

k ∈
{10, 20,
· · · , 200}

α ∈
{0.1, 0.2,
· · · , 0.9}

Sa
lt

&
Pe

pp
er RSTD 0.0092 — —

TORPCA 0.2000 — 0.2
TRCPD 0.0134 160 —
ORPCA 0.0621 20 —

oc
cl

us
io

n RSTD 0.0076 — —
TORPCA 0.0190 — 0.2
TRCPD 0.0017 50 —
ORPCA 0.0300 40 —

Table 1. Optimal parameter choices for all algorithms used in
different experiments.

4.3. Facial image denoising

It is well understood that a convex Lambertian surface, viz.
faces, under distant and isotropic lighting has a low-rank un-
derlying model. In light of this, we consider images of a fixed
pose under different illuminations from the extended Yale B
database for benchmarking. All 64 images for one person
were studied. For matrix-based methods, 32556 × 64 obser-
vation matrices were formed by vectorising each 168 × 192
image. All images are also re-scaled such that every pixel lies
in [0, 1].
• Salt & Pepper Noise Salt & pepper noise is observed

in real images, commonly caused by data transmission er-
rors. To apply salt & pepper noise, we randomly set pixels
to black (0) or white (1) with equal probability. This is close
to the Laplacian noise hypothesis, where noise is heavy, non-
Gaussian and potentially wide-ranging. We test an extreme
case, where 60% of all the pixels are affected.
• Partial Occlusion Partial occlusion is ubiquitous in vi-

sual information, which can usually be completed during hu-
man visual perception [14]. For the partial occlusion noise,
we generate randomly sized patches at random locaions. The
maximum dimension is 160 pixels and the occlusion is full of
Salt & Pepper noise.

The successful application of various algorithms requires
careful tuning of the algorithmic parameters. These include
the penalty parameter λ, an estimate of k = rank(L) and
ki = ranki(L) = ddi × αe. The ranges of interest and the
optimal choices are summarised in Table 1.

Reconstruction from salt & pepper noise is illustrated in
the first row of Fig 3, where the first image in the sequence
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(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

Fig. 3. Image Denoising Experiments: (a) & (h) are original images from the sequence. Salt & pepper is introduced as shown
in (b) and occlusion is demonstrated in (i). (c) & (j) present recovery results for RSTD. (d) & (k) for TORPCA. (e) & (l) for
TRCPD. (f) & (m) for PCP. And (g) & (n) for ORCPA.

is shown. RSTD and matrix-based methods fail to remove
the introduced noise, whereas TORPCA and TRCPD are ex-
tremely promising such that no trail of noise can be seen. Re-
covery from partial occlusion is displayed in the second row
of Fig 3. ORPCA has little effect. The region where noise
was introduced is severely distorted in the recovered image of
RSTD. Both TORPCA and TRCPD mananged to denoise the
occlusion though they have an additional smoothing effect.
PCP achieves the highest quality of recovery but there is still
unremoved noise left in the image. This may be attributed
to the fact that the nature of the occlusion is inherently in a
matrix form.

5. CONCLUSIONS

In this paper, two novel methods, namely the TORPCA and
TRCPD have been proposed in order to address the problem
of robust low-rank tensor recovery. The proposed methods
surpass existing tensor- and matrix-based methods in our ex-
periments. We anticipate our work to lay foundations for
more general signal processing problems. Future direction
of research can extend our methods to hierarchical tensor de-
composition.
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