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Abstract—The problem of range-migrating target de-
tection in a compound-Gaussian clutter is studied here.
We assume a target to have a range-walk of a few
range cells during the coherent processing interval, when
observed by wideband radar with high range resolution.
Two CFAR detectors are proposed assuming different
correlation properties of clutter over range. The detec-
tors’ performance is studied via numerical simulations
and a significant improvement over existing techniques
is demonstrated.

I. INTRODUCTION

Modern wideband radars have enabled a sub-meter

range resolution, thus providing additional possibilities

for target detection and classification [1], [2]. However,

the target detection in high resolution mode has a few

differences w.r.t. the detection in low range resolution

mode. Namely, clutter becomes non-Gaussian, targets

become range extended and also, fast-moving targets

appear to have a range-walk (also called range migra-

tion) during the coherent processing interval (CPI).

The modern trend is to model the non-Gaussian

clutter as a compound-Gaussian (CG) process, which

allows to separate slow-time correlation characteristics

of clutter from its PDF [2], and provides a mathemati-

cally tractable tool to derive detectors. Radar detection

of point and extended targets has been extensively

studied during the last decades, resulting in a number

of handful detectors for the aforementioned scenarios

[2]. Algorithms for covariance matrix (CM) estimation

from the reference CG data complement the aforemen-

tioned detectors and make them adaptive [2], [3]. On

the other hand, the target range-walk is generally not

considered for target detection. For fast moving targets,

which are of interest for radar, ignoring the range-walk

results in the smearing of the target response in range

and velocity [4]. Consequently, signal to clutter ratio

(SCR) degrades, as well as the detection performance.

The aim of this paper is to derive CFAR detector

for a range migrating target in a CG clutter. To do

this, we develop two detectors considering, firstly, an
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independent and, secondly, a dependent interference

model of the CG clutter, defined according to [5].

This paper is organized as follows. In Section II,

we revise the target model and provide the problem

formulation. Next, in Section III we derive a detector

for the independent interference model (IIM), and then,

in Section IV we consider the case of dependent

interference model (DIM). The performance of the

proposed techniques is evaluated in Section V and

conclusions are given in Section VI.

II. DATA MODEL

A. Target model

Assume a wideband radar to coherently transmit

M wideband pulses. The signature of a point target,

observed by the radar in a block of K adjacent range

cells, can be expressed by K ×M matrix A [4]:

Ak,m = ejfDTrm · up

(

k −

(

k0 −
v0Tr

δR
m

))

, (1)

where m = 0 . . .M −1 is the pulse (slow-time) index,

k = 0 . . .K − 1 is the range cell (fast-time) index, k0
stands for the initial range cell of the target, moving

with the constant radial velocity v0, fD = 4πv0fc/c
is the Doppler frequency of the target at the lower

frequency of the band (transmitted signal occupies

frequencies from fc to fc + B), Tr is the pulse repe-

tition interval (PRI), δR = c/(2B) is the radar range

resolution, B is the bandwidth of the transmitted signal

and up(x) denotes the pulse response of the transmitted

waveform. Herein we assume a waveform with a flat

spectrum over the band, so up(x) = sinc (πx).
Because of the migration effect, the target ampli-

tude estimation and, therefore, the detection should

be performed over the low range resolution segment

(LRRS) containing K adjacent range cells, such that

the condition on maximal target velocity (Vmax) holds:

K ≥ [vmaxMTr/δR] + ∆E , (2)

where [·] stands for the rounding towards integer

operation and ∆E defines the extent of the target in

range cells. In this paper, the problem of extended

target detection is not considered, thus ∆E = 1.
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B. Notations and definitions

In this paper we use lowercase boldface letters

for vectors and boldface uppercase letters for ma-

trices, the scalars are denoted by non-bold letters.

Most vectors have the size of the vectorized LRRS,

so KM × 1. Thus, for example, vectorized received

data in the LRRS are denoted by y, which is given

element-wise by y = [y0, y1 . . . yKM−1]
T . Here-

inafter we also refer to the block of data, corre-

sponding to the k-th range cell by the sub-vector of

length M : yk = [ykM , . . . , y(k+1)M−1]
T , so y =

[yT

0 ,yT

1 , . . . ,yT

K−1]
T . Similar notation holds for other

KM × 1 vectors.

Some variables are briefly described here:

• a - vectorized known steering vector of the target

in the LRRS: a = vec(AT );
• c - vectorized response of CG clutter in the LRRS;

• g - vectorized response of speckle component in

the LRRS;

• σ2
k - clutter texture (local power) in the k-th range

cell;

• α - constant amplitude of a target in the LRRS

under hypothesis of its presence (H1);

• M - KM×KM CM of CG clutter in the LRRS.

C. Problem formulation

The detection problem can be formulated as:

yk =

{

H0 : ck

H1 : αak + ck
k = 0 . . .K − 1. (3)

The clutter in each range cell is modeled as a CG

random vector, i.e. a product of two independent

random variables [2]: ck = σkgk. A priori knowledge

about the distribution of texture σ2
k has been shown

to provide a detection improvement for small M ,

but results in equivalent performance for M > 16
[6]. Moreover, the target range-walk can be observed

only for large M , therefore, we consider σ2
k to be an

unknown constant. The texture σ2
k is considered to be

constant along slow-time, but different from one range

cell to another. The speckle component g is modeled

by KM × 1 zero mean complex Gaussian vector.

In the following two section, we develop two detec-

tors by considering the IIM and DIM of CG clutter.

III. MIGRATING TARGET DETECTION IN CG

CLUTTER - INDEPENDENT INTERFERENCE MODEL

A. Clutter model

According to the IIM, the clutter is considered to

be uncorrelated over range. The speckle component

in each range cell k is modeled as an indepen-

dent M -dimensional complex Gaussian vector with

zero mean and known CM: gk ∼ CN(0,Mv), so

E{gkg
H

i }|k 6=i = 0M and E{ckc
H

i }|k 6=i = 0M . The

clutter CM in every range cells is then given by

E{ckc
H

k } = σ2
kMv; and the CM of clutter in a LRRS

has block-diagonal structure:

M =











σ2
0Mv 0M · · · 0M

0M σ2
1Mv · · · 0M

...
...

. . .
...

0M 0M · · · σ2
K−1Mv











. (4)

B. Generalized likelihood ratio test (GLRT)

In order to derive the detector we perform the GLRT.

Under both hypotheses, the clutter local powers σ2
K,

where K : k = 0 . . .K−1, are unknown; under H1, α
is also unknown. The likelihood function of the LRRS

under H1 has a form:

f1(y;α, σ
2
K) =

exp
(

−
∑K−1

k=0 σ−2
k (yk − αak)

H
M−1

v (yk − αak)
)

πKM |Mv|
K∏K−1

k=0 σ2M
k

,

(5)

and its counterpart under H0 can be obtained from

f0(y;σ
2
K) = f1(y;α, σ

2
K)|α=0. Constructing GLRT:

Λ(y) =
f1(y;α, σ

2
K)

f0(y;σ2
K)

(6)

and maximizing it over all the unknown parameters we

can find the estimation of clutter powers under H0:

(

σ̂
(0)
k

)2

=
yH

k M−1
v yk

M
, ∀k ∈ K (7)

and under H1:














α̂ =

∑

K−1
k=0

(

σ̂
(1)
k

)

−2
aH

k
M−1

v
yk

∑

K−1
k=0

(

σ̂
(1)
k

)

−2
aH

k
M

−1

v ak

,

(

σ̂
(1)
k

)2

=
(yk−α̂ak)

HM−1

v
(yk−α̂ak)

M
, ∀k.

(8)

The solution under H1 has to be found iteratively by

the fixed point iteration for α or σ2
K. The resulting

detector has a form:

Λ(y) =







K−1
∏

k=0

(

σ̂
(0)
k

)2

(

σ̂
(1)
k

)2







M

H1

R
H0

P
− M

M−1

FA , (9)

which insures CFAR property w.r.t. CM structure Mv

and clutter powers σ2
K, given the iterative estimation (8)

has converged. The detection threshold can be easily

checked by considering the particular case for v0 = 0,

when the detector can be written explicitly.

IV. MIGRATING TARGET DETECTION IN CG

CLUTTER - DEPENDENT INTERFERENCE MODEL

A. Clutter model

In the case of DIM, the clutter is correlated along

range, thus E{ckc
H

i }|k 6=i 6= 0M . The CG model,

being a product of two random variables, gives three

ways to model such a behavior: considering either
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the speckle component or texture to be correlated

over range, or both of them. Herein we assume the

clutter speckle to be correlated over range, while the

texture to be independent from one range cell to

another. This modeling is different from the approach

used in [7], [2]. The reason to follow this approach

is the following: when considering Gaussian clutter

as a particular case of the CG clutter, the adaptive

CFAR detector of a range-migrating target requires the

estimation of Q = E{ggH } - the KM × KM CM

of the speckle component of clutter in the LRRS [8]

(in case of Gaussian clutter, speckle CM is equal to

clutter CM). This Q cannot be obtained from the CM

in one range cell only, i.e. Mv. Ignoring the cross-

correlation between the range cells (by using Mv)

leads to the non-CFAR behavior, if the diagonal blocks

are substituted with their estimations [9].

Thus, we assume the clutter textures to be different

unknowns (as realizations of random variables), but the

speckle component to be correlated along range. As

a result, covariance and cross-covariance matrices of

clutter in the range cells of the LRRS can be expressed:

E{cic
H

j } = σiσjE{gig
H

j } = σiσjQi,j, (10)

where Qi,j denotes M ×M block of the speckle CM

Q, such that Qi,j = QiM...(i+1)M−1,jM...(j+1)M−1.

Every M ×M block Qi,j describes the correlation of

the speckle component between the range cells i and

j. According to these assumptions, the clutter CM in

the LRRS has the following structure:

M =







σ2
0Q0,0 · · · σ0σK−1Q0,K−1

...
. . .

...

σK−1σ0QK−1,0 · · · σ2
K−1QK−1,K−1






.

(11)

Herein we assume Q to be a known Hermitian positive

definite matrix and we derive a detector in terms of the

GLRT. To simplify the further derivation, we introduce:

W =











σ0IM 0M · · · 0M

0M σ1IM · · · 0M

...
...

. . .
...

0M 0M · · · σK−1IM











. (12)

Then, according to (11) we can write: M = WQW.

Moreover, M−1 = W−1Q−1W−1, or the same can

be written block-wise, similar to (11) with ith, jth block

of inverted CM being defined by M−1
i,j = σ−1

i σ−1
j Q−1

i,j

(Remark: notation Q−1
i,j stands for the ith, jth block of

Q−1). Similarly, the determinant of M can be given

via the determinant of Q as: |M| = |W| |Q| |W| =
|Q|

∏K−1
k=0 σ2M

k .

B. Generalized likelihood ratio test

The detection problem is the same as before, see (3),

and we perform the GLRT in order to find a detector.

The likelihood function of the LRRS under H1 is:

f1(y;α, σK) =
exp

(

−(y − αa)
H
M−1 (y − αa)

)

πKM |Q|
∏K−1

k=0 σ2M
k

(13)

and similarly f0(y;σK) = f1(y;α, σK)|α=0. The log-

arithm of the likelihood function is:

ln (f1(y;α, σK)) = −KM lnπ − ln

(

|Q|
K−1
∏

k=0

σ2M
k

)

−(y − αa)
H
M−1 (y − αa),

(14)

where the quadratic form in the last term depends on

the unknown parameters.

Denote µk,j = (yk − αak)
H
M−1

k,j (yj − αaj), then

(y − αa)
H
M−1 (y − αa) = µk,k

+2ℜ





K−1
∑

j=0,j 6=k

µk,j



+
K−1
∑

i=0,i6=k

K−1
∑

j=0,j 6=k

µi,j ,
(15)

where notation ℜ(·) stands for the real part of a

complex number. The same can be written in terms

of the speckle CM Q using the notations qk,j =

σkσjµk,j = (yk − αak)
H
Q−1

k,j (yj − αaj):

(y − αa)
H
M−1 (y − αa) =

qk,k
σ2
k

+2ℜ





K−1
∑

j=0,j 6=k

qk,j
σkσj



+
K−1
∑

i=0,i6=k

K−1
∑

j=0,j 6=k

qi,j
σiσj

.
(16)

Note that qk,j is independent of σK; and that the last

item in (16) represents terms independent of the data

in the k-th range cell.

In order to find σk we take the derivative of (14)

w.r.t. σk using (16) and set it to zero. The estimation of

σk can be obtained by solving the quadratic equation:

σ2
k − σk

ℜ
(

∑K−1
j=0,j 6=k σ

−1
j qk,j

)

M
−

qk,k
M

= 0, (17)

which is dependent on σj 6=k and it also de-

pends on α under H1. By denoting: b =

−ℜ
(

∑K−1
j=0,j 6=k σ

−1
j qk,j

)

/M and c = −qk,k/M , we

can see that each of K equations always has two

real roots (under both hypotheses), as b2 − 4c >
0. Moreover, from Vieta’s formula for second order

polynomial, it follows that the roots of (17) satisfies

σ
[1]
k σ

[2]
k = c < 0, so only one root is positive, which is

the one of interest. Then each σk has a unique solution,

which can be obtained via the function of all the other

local powers σj |j=0...K−1,j 6=k:

σ̂
(0)
k =

−b(0) +
√

(b(0))2 − 4c(0)

2

= f
(

σ
(0)
j=0...K−1,j 6=k

)

.

(18)
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Under H0 we have K equations, which form a system

with K unknowns, so they have a unique solution,

which can be found iteratively by the fixed point

iteration for system of equations.

Under H1, we have K equations for σk:

σ̂
(1)
k =

−b(1) +
√

(b(1))2 − 4c(1)

2

= f
(

α, σ
(1)
j=0...K−1,j 6=k

)

,

(19)

which depend on K+1 unknowns: σK and α. In order

to obtain a unique solution, we need to add the equation

for α, which can be obtained from the GLRT:

α̂ =
aH
(

M̂(1)
)−1

y

aH
(

M̂(1)
)−1

a

, (20)

where M̂(1) is defined according to (11) with σ̂
(1)
k

substituted for σk. The solution is thus calculated

similarly to that under H0.

In order to perform detection, the estimations

σ̂
(0)
k , σ̂

(1)
k and α̂ should be substituted into the GLRT

(6). Some simplifications of the GLRT can be done.

First, note that equation (17) can be rewritten in terms

of µk,j as:

K−1
∑

j=0,j 6=k

ℜ (µ̂kj) + µ̂kk = M. (21)

Further, we write the quadratic form of (15) via the

sums over rows as:

(y − α̂a)
H

(

M̂(1)
)−1

(y − α̂a)

=

K−1
∑

k=0



µ̂kk +

K−1
∑

j=0,j 6=k

µ̂kj



 = KM,
(22)

where the second equality holds because of (21) and

Hermitian structure of clutter CM. Similarly, under H0:

yH

(

M̂(0)
)−1

y = KM . Consequently, the exponen-

tial term of the likelihood functions (13) does not affect

the detection. The GLRT has a form:

Λ =
K−1
∏

k=0

(

σ̂
(0)
k

σ̂
(1)
k

)2M
H1

R
H0

λ, (23)

which is similar to the test in the case of IIM clutter

(see (9)). However, the estimators involved in these

detectors are generally different. If the clutter is un-

correlated over range, (9) and (23) are identical.

The advantage of the DIM detector (23) over the IIM

algorithm (9) is that the former does not require the

block-diagonal structure of the clutter CM. Therefore,

an adaptive detector can be obtained from the DIM

detector by substitution of the known speckle CM with

its estimation. However, the statistical analysis of an

5 10 15 20 25 30

10
−15

10
−10

10
−5

10
0

Nimber of iterations

C
(i
) 

=
 |
|W

i+
1
 −

 W
i|| 2 /

 |
|W

i|| 2

γ = 1, hypothesis H
0

γ = 1, hypothesis H
1

γ = 10, hypothesis H
0

γ = 10, hypothesis H
1

Figure 1. Convergence of iterative estimation in K-distributed
clutter ν = 0.5: γ = 1 corresponds to strongly correlated over
range clutter; γ = 10 to clutter slightly correlated over range

adaptive detector, which exploits LRRS speckle CM

estimated from the reference data, is out of the scope

of this paper.

V. SIMULATIONS

In this section the performance of the proposed

algorithms is assessed by numerical simulations. The

parameters of the radar are fixed to: fc = 10 GHz,

B = 1 GHz, Tr = 1 ms, M = 32; the maximum

expected velocity of a target is: |v0| ≤ va = c/(2fcTr),
so we set K = 5 to satisfy (2). In all the simulations,

the clutter follows K-distribution, a special case of

CG, with shape parameter µ = 1 and scale parameter

ν = 0.5.

A. Convergence analysis

We analyze the convergence by evaluating the

widely used criterion

C(i) =
||Ŵ

(h)
i+1 − Ŵ

(h)
i ||2

||Ŵ
(h)
i ||2

(24)

by numerical simulations. Herein we denote by Ŵ
(h)
i

the estimation of the matrix W (12) at i-th iteration

under hypothesis h. The known speckle CM has the

structure Q = R⊗IM (⊗ denotes Kronecker product),

so the clutter is uncorrelated over slow time, but cor-

related over range. R is K ×K symmetrical Toeplitz

matrix defined by its first column rk = exp(−γk) and

describes the correlation of clutter speckle over range.

Fig. 1 shows the convergence of the estimators (18),

(19) for the case of range-correlated speckle: γ = 1;

and almost uncorrelated over range speckle: γ = 10.

Note that in both cases the convergence is linear and

it is more rapid for weakly correlated clutter; in the

limiting case (γ → +∞) the estimate under H0 can

be found explicitly (7).

B. False alarm regulation

Herein we check the CFAR properties of the pro-

posed algorithms in a correlated CG clutter. We con-

sider a scenario similar to the previous simulation with
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F
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P
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 = λ−(M−1)/M

Known clutter powers

NMF−LRR
DIM−LRT
IIM−LRT

Figure 2. False alarm regulation in clutter strongly correlated over
range γ = 1; K-distributed clutter ν = 0.5

γ = 1 and we run 20 iterations of the estimators. We

performed 103 of Monte-Carlo trials of 2KM different

range-velocity cells. The PFA regulation of four algo-

rithms, namely IIM-LRT (9), DIM-LRT (23), NMF-

LRT (normalized matched filter applied to the LLRS

and using the speckle CM Q) and the clairvoyant

detector, assuming the known CM M, are shown in

Fig. 2. The line corresponding to

λ = P
− M

M−1

FA , (25)

is also plotted. This line represents the threshold of

IIM-LRT in IIM clutter (9). Fig. 2 shows that IIM-

LRT and NMF-LRT are generally not CFAR in range

correlated CG clutter, while DIM-LRT ensures CFAR

property with the threshold defined by (25).

C. ROC curves

Similarly to a range-extended target detection in a

CG clutter [2], the detection performance of range-

migrating target will be dependent on the spread of the

target response over range (hence for an extended tar-

get, non-coherent integration over range is performed,

while for range migrating target, this integration is

coherent). Thus, the performance of the proposed al-

gorithms will be velocity-dependent. Due to the lack

of space we omit this analysis here. However, in Fig. 3

we compare the performance of all the aforementioned

detectors in terms of ROC curves for a target at

velocity v0 = va, SCR=0 dB after coherent integration

and correlated clutter with γ = 1. A detector with

the narrow-band target signature, ignoring migration

term in (1) is also added for comparison (NB NMF).

The results show that ignoring of target range-walk

or clutter variation along range-walk results in severe

degradation of the performance. The DIM detector

achieves the performance of the detector with the

clairvoyant CM, and the IIM detector have slightly

worse performance than the DIM detector due to the

ignorance of clutter range correlation.

10
−4

10
−3

10
−2

10
−1

0

0.2

0.4

0.6

0.8

1

P
FA

P
D

ROC curve, SNR=0dB, v
0
=V

a
, K−distributed clutter with ν=0.5

LRR NMF

NB NMF

LRT with known CM M
DIM−LRT
IIM−LRT

Figure 3. ROC curves for migrating target v = va, SCR=0 dB in
K-distributed clutter ν = 0.5, strongly correlated over range γ = 1

VI. CONCLUSION

In this paper we have proposed two CFAR detectors

of range-migrating target in a compound-Gaussian

clutter. These algorithms involve iterative estimations

of clutter local power, which have to be carried

out numerically. The resulting detectors are functions

of the received data and covariance matrix of the

clutter speckle component only. The proposed detec-

tors provide significant improvements over existing

techniques in terms of ROC curves. Moreover, the

proposed approach for dependent interference clutter

model provides a way to develop an adaptive detector

of range-migrating targets in a compound-Gaussian

clutter, which is of practical interest.

REFERENCES

[1] F. Le Chevalier, Principles of Radar and Sonar Signal Process-

ing. Artech House, 2002.
[2] A. De Maio and M. Greco., Modern Radar Detection Theory.

SciTech Pub., 2016.
[3] F. Pascal, P. Forster, J.-P. Ovarlez, and P. Larzabal, “Performance

analysis of covariance matrix estimates in impulsive noise,”
IEEE Transactions on Signal Processing, vol. 56, no. 6, pp.
2206–2217, 2008.

[4] F. Deudon, S. Bidon, O. Besson, and J. Tourneret, “Velocity
dealiased spectral estimators of range migrating targets using
a single low-PRF wideband waveform,” IEEE Transactions on

Aerospace and Electronic Systems, vol. 49, no. 1, pp. 244–265,
Jan 2013.

[5] F. Gini and M. Greco, “Covariance matrix estimation for CFAR
detection in correlated heavy tailed clutter,” Signal Processing,
vol. 82, no. 12, pp. 1847–1859, 2002.

[6] K. J. Sangston, F. Gini, M. V. Greco, and A. Farina, “Structures
for radar detection in compound Gaussian clutter,” IEEE Trans-

actions on Aerospace and Electronic Systems, vol. 35, no. 2, pp.
445–458, 1999.

[7] M. S. Greco and F. Gini, “Statistical analysis of high-resolution
SAR ground clutter data,” IEEE Transactions on Geoscience

and Remote Sensing, vol. 45, no. 3, pp. 566–575, 2007.
[8] N. Petrov, F. Le Chevalier, and A. Yarovoy, “Unambiguous

detection of migrating targets with wideband radar in gaussian
clutter,” in CIE International Radar Conference, 2016. CIE,
2016.

[9] F. Dai, H. Liu, P. Shui, and S. Wu, “Adaptive detection of
wideband radar range spread targets with range walking in clut-
ter,” IEEE Transactions on Aerospace and Electronic Systems,
vol. 48, no. 3, pp. 2052–2064, 2012.

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 2284


