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Abstract—Communication networks can be the targets of
organized and distributed attacks such as flooding-type DDOS
attack in which malicious users aim to cripple a network server
or a network domain. For the attack to have a major effect on
the network, malicious users must act in a coordinated and time
correlated manner. For instance, the members of the flooding
attack increase their message transmission rates rapidly but
also synchronously. Even though detection and prevention of the
flooding attacks are well studied at network and transport layers,
the emergence and wide deployment of new systems such as VoIP
(Voice over IP) have turned flooding attacks at the session layer
into a new defense challenge. In this study a structured sparsity
based group anomaly detection system is proposed that not only
can detect synchronized attacks, but also identify the malicious
groups from normal users by jointly estimating their members,
structure, starting and end points. Although we mainly focus
on security on SIP (Session Initiation Protocol) servers/proxies
which are widely used for signaling in VoIP systems, the proposed
scheme can be easily adapted for any type of communication
network system at any layer.

Index Terms—Compressive Sensing, Network Security, DDOS,
Voice over IP

I. INTRODUCTION

Voice over IP (VoIP) is a technology that allows making
voice calls using a broadband Internet connection; its rising
popularity indicates that it will completely take over both pub-
lic switched telephone networks (PSTN) and cellular networks,
for example, in 5G systems. The Internet telephony protocol,
namely the Session Initiation Protocol (SIP) not only provides
more flexible and low-cost communication, but also simplifies
data sharing, multimedia conmmunication, web conferences
etc. In the application layer, most VoIP systems use Session
Initiation Protocol [18] (SIP) to setup communication calls and
Real-Time Transport Protocol (RTP) to deliver media. Despite
the key advantages of internet telephony, the downside is that
VoIP systems are still vulnerable to a wide range of attacks,
the most common one being Denial-of-Servise/Distributed-
Denial-of-Service (DOS/DDOS) flooding attacks [9].

DOS/DDOS flooding attacks can be done at both trans-
port/network layer and application layer levels. The flooding
attacks at transport/network layers and their countermeasures
have been well documented in the literature. However, flooding
attacks in the application layer targeting certain services, and

in particular aiming to consume network server resources to
make the system unresponsive to valid user requests is a new
trend. One type of SIP flooding is just sending a large number
of fake SIP packets to exhaust processor bandwidth. Another
type floods the proxy server with INVITE or REGISTER
messages [19], [20]. An INVITE message is used to establish
a communication session among two or more users, and when
such a message is received in the proxy server, the session
initiation state is kept for up to 3 minutes [18]. Therefore
an INVITE flooding can exhaust the resources of the server.
Similarly, attackers can flood REGISTER messages to cause
a DOS in the SIP registrar.

For SIP based VoIP applications, there are a number of
flooding attack detection methods in the literature. Reynolds
et al. [10] have developed a detection scheme based on the
well-known cumulative sum method [11]. In [5], the authors
propose a statistical anomaly detection system based on the
Hellinger distance. In [6], a hybrid anomaly detection scheme
is suggested to detect flooding attacks used both at SIP and
RTP layers. In [8] the authors suggest and compare three
algorithms: adaptive threshold, cumulative sum and Hellinger
distance. The surveys [9], [12] contain a more detailed review
of literature on SIP flooding attacks. One shortcoming of the
existing detection methods is that the behaviour of individual
network users is not directly observed, so that it is not
easy to distinguish malicious users. In this work, we focus
on SIP packet flooding attacks and we propose a sparsity-
based anomaly detection scheme with the goal to model the
behavior of individual terminals and to identify malicious
users. Another advantage of our scheme is that it does not
require any training phase or setting of any thresholds.

In Section II-A, we discuss organized attacks typical of
DDOS and the way they can be related to structured sparsity-
based signal representation. Then, we give the sparse signal
representation of organized attacks in II-B. In Section III, the
DOS/DDOS detection problem is defined as a constrained
optimization problem. In section IV, we discuss proximal
methods suitable for the convex optimization problem given
in the problem definition. Finally, we show the performance
of the proposed algorithm in the Experimental part and draw
conclusions.
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II. PRELIMINARIES

A. Assumptions for Organized Attacks

We assume the following characteristics of an organized at-
tack such as DDOS: (i) Attacks occur very rarely compared to
normal packet traffic, implying that anomalies appear sparsely
in the time index. (ii) In any attack event, only a small group
from the entire set of users is expected to act maliciously,
which means that anomalies are also sparse in the user index.
(iii) The contributions of individual attackers for a particular
attack are assumed to be sychronized. (iv) No one attacker
can dominate the change in the overall statistics. (v) Normal
background SIP packet traffic is also sparse in both time and
user index. Session initiation packets are expected to be rare
as compared to the transport protocol data units, such as RTP
traffic which carries the media streams.

B. Sparse Representation of the organized attack problem

Let Y be the m×N measurement matrix whose ith row, yi
includes the vector of message counts of the ith user observed
over N instances. The measurements can represent the count
of total SIP messages or the count of individual types of SIP
message, such as INVITE. All measurements correspond to
count of events within fixed time quanta, e.g., 1 second. We
assume that unless there is an attack, the user state remains
the same in the network. Then the measurement vector, yi
can be approximated by a piece-wise constant function ui
representing current state of the user i and bi representing
the normal background traffic, i.e.,

Y = U +B, (1)

In this equation, U is the state matrix whose i’th row consists
of the piece-wise constant function ui and B is the background
measurement matrix whose i’th row is the bi. In Figure 1,
an example m × N measurement matrix is simulated. The
anomalies (or change in the states) occur only in the data of
four groups of 40 users from the total of 100, each group
consists of 10 users. In this scenario, the anomalous increases
in traffic intensity take place concurrently, which may imply
a synchronized attack.

In the case of d-dimensional feature vectors, for example
the counts of the d-types of individual SIP messages, the
measurements will constitute a d×m×N measurement tensor
Y .

III. PROBLEM DEFINITION

In the model presented in II-B, the problem can formulated
as estimating the state matrix U given the observation matrix
Y in view of the assumptions listed in II-A. The estimation
of U can be expressed mathematically as follows:

Û = argmin
U

{
F (U) ≡

4∑
i=1

wifi (U)

}
(2)

where each of the terms, fi(U) corresponds to one of the
constraints in Section II-A, and the wi are their associated
weights.

Fig. 1: An example m×N measurements matrix where N =
150 current observations of m = 100 users. The measurements
consist of the number of received SIP messages per second. In
this figure four different attack instances from different groups
and at different times (0-20, 15-40, 80-140, 140-180) can be
observed against the normal background traffic.

A. Data Fidelity

In the cost function F (U), fidelity of the model U to
the data Y can be set as the mean squared error f1(U) as
w1 ‖Y − U‖2F .

B. Sparsity of anomalies in time

We assume that anomalies are sparse in the time in-
dex. Such a penalty function, f2(U), can be expressed as
w2

∑N−1
i=1

∑m
k=1 |Uk,i+1 − Uk,i|. This is indeed the total vari-

ation in one direction and minimizing this term forces the
functions, ui, i = 1, ..., N , to be piece-wise constant [16], [17].

C. Sparsity of attackers

We assume that only a minority from the entire user
set would organize themselves to mount an attack. This
assumption can be satisfied by enforcing sparseness of the
number of rows of U , i.e., by choosing f2(U) as ‖U‖0,2 =∑m
k=1 I

(
‖Uk,:‖2

)
, where I(.) is the indicator function. This

term is non-convex and can be relaxed to ‖U‖1,2 =∑m
k=1 ‖Uk,:‖2 [2].

D. Synchronization of attacks in a group

An organized attack DDOS attack can be realized if the
flooding attempt from malicious users are mostly correlated
and synchronized in time. This assumption can be satis-
fied by choosing the nuclear norm of U, i.e., f4(U) as∑min{m,n}
k=1 I (σk), where σk is kth singular value of U and

I(.) is the indicator function. Since this term is not convex it
can be relaxed to ‖U‖∗ =

∑
σi(U) [4].

IV. PROXIMAL SPLITTING METHODS

The formulation of the cost function given in Eq. (2)
involves the sum of both smooth and non-smooth terms, for
which the solution method is non-trivial. Among alternate
algorithms in literature for the solution of such convex op-
timization problems, we chose the proximal method to solve
Eq. (2) for the following reasons:
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• The proximal method is suitable for distributed optimiza-
tion. In the case of a large sized problem with thousands
of users and large dimensional feature vectors (m � 1
and d� 1, respectively in the d×m×N measurement
tensor), this method can be very convenient.

• Proximal methods work for both smooth and non-smooth
extended real valued functions. Then, any modification
in problem definition given in Equation (2) can be easily
accommodated in our system.

A. Proximal Mapping

Proximal methods use proximal operators to solve convex
optimization problems. A proximal operator or proximal map-
ping [1] of a function fi with weight γ can be defined as

proxγf (z) = argmin
u
{f(u) + 1

2γ
‖u− z‖2}

B. Parallel proximal algorithm

Following parallel proximal algorithm given in [3], [21],
which is derived from Dougles-Rachford algorithm [22] can
be used to solve in distributed manner convex optimization
problems that incorporate more than one non-smooth function
as in (2).

Algorithm 1 Parallel proximal algorithm

Input: Y
Determine: λ, {wi}4i=1 s.t.

∑
wi = 1, γ

Initialize: U,Z, pi = Y, i = 1, ...4, k = 0
repeat

pi ← proxγf1(zi), i = 1, ..., 4
P ←

∑4
i=1 wipi

zi ← zi + λ (2P − U − pi), i = 1, ..., 4
U ← U + λ (P − U)
k ← k + 1
γ ← g(γ)

until Convergence or maximum iteration (k == maxit)
return U

In this algorithm Y is our m × N measurement matrix
for d = 1, and γ is the step size. We have four weighting
parameters such that

∑
i wi = 1 whose selection will be

discussed later. Although the step size γ can also be chosen
as a constant, we opt for a monotonically decreasing function
g = n∗maxit−(n−1)∗k

maxit for faster convergence. The proximal
operators of each term are as follows:

1) Proximal Operator of Data Fidelity Term: Using the
definition, one has:

proxγf1(Z) = argmin
U

1

2
‖U − Z‖2F + w1 ‖Y − U‖2F

where Z is the m×N current solution. The proximal solution
of this term is simply the gradient of f1,

proxγf1(Z) = (z + 2γY )/(1 + 2γ).

2) Proximal Operator of the term enforcing the sparsity in
the user index:

proxγf3(Z) = argmin
1

2
‖U − Z‖2F + γ ‖U‖`1,2 ,

which yields

(proxγf3(Z))(j, :) =

{(
1− γ

‖Z(j,:)‖

)
Z(j, :) if γ < ‖Z(j, :)‖,

0 else

3) Proximal Operator of the term enforcing synchronization
of group attackers:

proxγf4(Z) = argmin
1

2
‖U − Z‖2F + γ ‖U‖∗ ,

which yields

proxγf4(Z) = A ∗ proxγ`1(diag(D)) ∗BT ,

where Z = ADBT is singular value decomposition of Z and
proxγ`1(x) is given as

prox`1(xi) =


xi + γ if xi ≤ −γ

0 if −γ ≤ xi ≤ +γ,
xi − γ if xi ≥ 0

when xi is the i.th element of vector x.
4) Proximal Operator of the term enforcing the sparsity

of anomalies in time: As stated in Section III-B, this term
can be achieved using proximal operator of TV function in
one dimension. However, there is no closed form of the
proximal map of TV regularizers. In [23], authors use a
special case of parallel proximal algorithm, Proximal Dykstra
to compute proximal of 2-D TV using proximal operator of
1-D in distributed manner.

V. EXPERIMENTAL DESIGN

A. Network Traffic Generator

Network Traffic Generator (NTG) is a tool [7] to generate
calls among users registered in a SIP server. NTG aims to
mimic genuine user behaviors in term of call frequency, call
duration and call direction by initiating sessions, holding and
ending them. Notice that NTG is not concerned with the
generation of voice packets as in Real-time Transport (RTP)
traffic, but generates only SIP message traffic.

NTG is based on a probabilistic generative model and the
behavior of the model changes according to the predefined
parameters such as number of users, number of social groups,
average call duration etc. The probabilistic generative model
can be thought as a library that gives us the probability
distribution of reactions of individual users for every possible
scenario. Details and default parameters are given in [7]. NTG
is built using Python and open source SIP call generator library
PJSIP [14]. A free of charge Asterisk PBX based SIP server,
Trixbox [15] is used in our experiments.
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Fig. 2: (i) Monitor visualizes the number of packets received
from each users. (ii) Estimations of state, Û . This is used in
discrimination of the attacker groups.

B. Attack Generator

The organized attacks are produced using the NETAS
NOVA V-SPY tool [13]. In this tool DDOS attacks can
be produced by selected malicious users with given attack
intensity values. Attack intensity is adjusted vis-á-vis the
background normal traffic intensity.

C. Features

Most commonly used features for the detection of flooding
type attacks comprise the traffic intensity at servers/proxies.
In this study, incoming and outgoing packet traffic at the
SIP server is monitored. Our monitoring system captures the
counts of the incoming and outgoing packets per second and
distinguishes 14 different types of request and 14 type of
responses. These packet types list as follows:

• Requests : Register, Invite, Subscribe, Notify, Options,
Ack, Bye, Cancel, Prack, Publish, Info, Refer, Message,
Update

• Responses : 100, 180, 183, 200, 400, 401, 403, 404, 405,
481, 486, 487, 500, 603

D. Experiments

1) Performance measurements: The performance of the
system is measured in terms of precision, recall and F-
measure, detection latency, correct detection of the start (onset)
and end points (offset) of the attacks.

Precision (P) =
# assigned true (attack/group members )

# assigned attackers
(3)

Recall (R) =
# assigned true (attack/group members )

# all attackers
(4)

F-Measure (F) = 2
P ×R
P +R

(5)

For each suspicious group, the time elapsed until all the
group members are detected is also recorded. To this effect,
We define the delay performance criteria as follows;

D =
The elapsed time until all group members detected

Total number of the suspicious groups
(6)

Start/end point detection success rate is recorded as

SPD/EPD =
# correctly assigned start/end points

total number of attacks
(7)

2) Experiment 1: In this experiment, a VoIP network con-
sisting of 100 users is simulated using the network simulator
described in Section V-A, while the group attacks are sim-
ulated using VSPY. In each group, 10 of the total users are
selected as malicious and each such group attacks the system
at different times with different attack intensity values. We use
a total number of 28 incoming and outgoing message types,
and their occurrences are totaled over 1 second intervals. The
experiment runs for most recent 150 seconds. Therefore we
have measurements collected in a 100×150 matrix Yt at time
t, including information of recent 150 seconds in the streaming
sense. We also record the malicious users’ identity in each
attacker group, and the start and end points of the attacks. Each
attacker group is identified with its start point. The elapsed
time until all members of an attacker group are detected is also
automatically recorded by the monitoring system. We generate
flooding attacks with five types of messages: REGISTER,
INVITE, OPTIONS, CANCEL and BYE packets. The attack
intensities are selected as 50, 100, 250 and 750 (e.g., if
we choose INVITE type attack with intensity of 50 for 10
attackers, VSPY floods INVITE messages with a mean of 5
packets per user in each second). Average performance results
from 80 attacks with mixed message types are given in Table
I. As expected, the detection delay decreases as the attack
intensity increases.

Attack intensity P R F SPD EPD Delay

Group members

50 1 1 1 N/A N/A 13
100 1 1 1 N/A N/A 6.11
250 1 1 1 N/A N/A 5.08
750 1 1 1 N/A N/A 2

Organized Attack

50 1 1 1 1 0.75 N/A
100 1 1 1 1 0.75 N/A
250 1 1 1 1 83 N/A
750 1 1 1 1 91 N/A

TABLE I: The results for Experiment 1.
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3) Experiment 2: This time we fixed the attack generator
to a very low attack intensity of 50. In this case, the expected
message count in a second per attacker becomes 2 if we
assume a population of 25 malicious users. The performance
of the system as the number of malicious users change is
estimated by generating 80 separate attacks. The total number
of active users at the VoIP server is selected as 100, and the
attack durations range from 30 seconds to 120 seconds. Table
II shows that the performance of the proposed method is still
satisfactory even for low intensity attacks. We have observed
that most of the missed attacks occur when the attack intensity
(per user) is very low and it is of short duration. To quote some
figures, failures to detect occur when the expected total packet
count per user (when 25 malicious users are considered) is 4 (2
for request and 2 for response) and the attack duration is less
then 30 seconds. One way to improve the proposed method is
to consider additional features from the server resource usage
such as CPU and memory usage.

Attacker p. P R F SPD EPD Delay

Group members

5 1 1 1 N/A N/A 5.12
10 1 1 1 N/A N/A 12.37
15 0.995 0.987 0.99 N/A N/A 24.62
20 0.94 0.763 0.84 N/A N/A 37.46
25 1 0.64 0.78 N/A N/A 66

Organized Attack

5 1 1 1 1 0.75 N/A
10 1 1 1 1 0.75 N/A
15 0.952 1 0.975 1 0.81 N/A
20 0.952 0.95 0.951 0.95 0.90 N/A
25 1 0.75 0.87 0.75 0.62 N/A

TABLE II: Results for Experiment 2

4) The weighting parameters: A few words about the
parameters are in order. The tuning of the four weighting pa-
rameters in the optimization problem forms trade-off between
precision and recall. For instance, if we decrease the weight of
the term enforcing user index sparsity, it will cause detection
delay to decrease and recall rate to increase, however at the
cost of an increase in false alarm rate. Likewise, an emphasis
on the nucleus norm will improve the detection precision of
attacking groups, but it will deteriorate recall rate of both
groups and group members since the remaining 3 weights
must decrease. After experimentation with our simulation
environment, we have determined the parameters, w1, .., w4

to be 0.037, 0.25, 0.25, 0.463, respectively.

VI. CONCLUSION

In this study, a synchronized flooding attack detection
scheme has been proposed for SIP networks and its effective-
ness demonstrated with simulation experiments. It has been
observed that sparse models are very effective in flooding
attack detection given the sparse nature of the SIP messaging
traffic. The proposed scheme is also highly effective in the
identification of attackers, individually and as a group. One
advantage of the algorithm is that it does not need any
parameter settings such as threshold values. Furthermore, the
solution of the optimization problem via proximal operators
opens the way to distributed computing, which can be crucial
in large-scale problems.
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