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Abstract—In this work, we investigate robust speech energy
estimation and tracking schemes aiming at improved energy-
based multiband speech demodulation and feature extraction
for multi-microphone distant speech recognition. Based on the
spatial diversity of the speech and noise recordings of a multi-
microphone setup, the proposed Multichannel, Multiband De-
modulation (MMD) scheme includes: 1) energy selection across
the microphones that are less affected by noise and 2) cross-signal
energy estimation based on the cross-Teager energy operator.
Instantaneous modulations of speech resonances are estimated
on the denoised energies. Second-order frequency modulation
features are measured and combined with MFCCs achieving
improved distant speech recognition on simulated and real data
recorded in noisy and reverberant domestic environments.

I. INTRODUCTION

Several scientific projects [18], [7] and challenges [8], [10]
have been launched during the last decade targeting intelligent
interfaces for indoors smart environments. Distant speech
recognition (DSR) via distributed microphones is examined
in most of them. State-of-the-art developments in acoustic
modeling for speech recognition [21] have demonstrated high
levels of recognition performance under clean conditions or
high signal-to-noise ratios (SNRs), making voice-enabled user
interfaces practically usable in a variety of everyday envi-
ronments. However, untethered, far-field, and always-listening
operation, robust to noise and reverberation, still constitutes a
challenge that limits their universal applicability.

Multi-microphone setups offer flexibility on multi-source
and noisy acoustic scenes by capturing the spatial diversity
of speech and non-speech sources. Richer multichannel ob-
servations may be potentially exploited and fused in many
stages of the recognition pipeline. To name a few established
approaches in the literature from early to late fusion: channel
selection, beamforming, feature enhancement, and rescoring
have brought notable improvements to recognition rates. More
recently, some of these approaches were revised in the frame-
work of Deep Neural Networks (DNNs) where non-linear
modeling is feasible. Networks are trained to extract bottleneck
features [5], and combine channels [12], achieving similar or
better results compared to beamforming. However, training
DNNs on multi-style and multi-channel data [20] is the
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main focus, while incorporating traditional array processing
methods remains unexploited.

Non-linear features stemming from the AM-FM speech
model were originally conceived for ASR in [4] as capturing
the second-order non-linear structure of speech formants,
whereas the linear speech model and its corresponding fea-
tures (e.g., MFCCs) capture the first-order linear structure of
speech. Their fusion exhibits robustness in noise and mismatch
training/testing conditions (e.g., in Aurora-4 task), as indicated
by the single-channel ASR results in recent works [5], [16].
However, only a few works [19], [15] examine their perfor-
mance in reverberant environments.

Herein, we extend our previous work [19] on modulation
features for DSR by proposing a multi-channel scheme for
energy tracking that is robust to noise and applicable in the
workflow of multiband speech demodulation for improved
estimation of the AM-FM speech model parameters. Noise
is minimized across the available bands and channels by
selecting the “cleanest” in terms of Teager-Kaiser Energy
(TKE) or by estimating cross-channel energies using the cross-
TKE (CTKE) operator. A similar approach has been followed
in [11] for the extraction of multisensor, multiband energy
features. Although the robustness of cross-energy operators
have been analyzed in early studies [14], only a few works [3]
employ them.

II. MULTICHANNEL ENERGY TRACKING

Let us denote with

Ym(t) = s(t) + um(t), m=0,...,M —1 (1)

the noisy speech recordings captured by M microphones of an
array, where s is the source signal and w,,, is the microphone-
dependent noise. Note that reverberation effects and time
alignment issues between ¥, are not taken into account
in the following analysis. Bandlimited speech components
are obtained by decomposing y,, with a Mel-spaced Gabor
filterbank {gx(t)}:

Ymik(t) = ym () x gk (t), k=0,...,N—1 2)

The signals recorded by adjacent microphones are expected
to be correlated. A measure of their interaction can be given
by the cross-Teager energy [9] operator W, that measures
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Fig. 1. Multichannel energy tracking: Given the noisy recordings y1, y2
(2nd and 3rd row) of an array, the minimum Teager energy W is selected
among them (in red rectangulars) after averaging in non-overlapping frames
of duration 7". The minimum cross-Teager energy \Ilzni"[ym7ylg] is found

between the channels 77 and ¢ having the Ist and 2nd smaller energies.

the relative rate of change between two oscillators. More
analytically:

U [Ymks Yok) = YmkYek () — Ymrbiek 3)

where dots and double dots correspond to the first- and second-
order derivatives, respectively. Based on the analysis of [11],
noise u(t) contributes as an additive error term on averaging:

E{Yclymr, yer]} = E{¥[sk]} + error “4)

Consequently, the energy ¥™" [ymk.,y,%] with the minimum
average, formed by microphones (7, ¢), is expected to lie
closer to U[sk(t)]. Another outcome of [11] was that instead
of searching (772, /) among all pairs of microphones, which
is computationally intensive !, it suffices to search between
microphones /m and £ having the 1st and 2nd smallest average
Teager energies:

U(k) = U [y, Y (5)
(i, £) = arg min (E{V" [ymr, )} ELVE™ [Yins Yim]})
m,f

As a result, based on the fact that noise contributes as an
additive term in both Teager and cross-Teager energies of
the bandpass microphone signals, taking the minimum among
them yields the most robust energy for demodulation. Tracking
of U™ (k) and U™ (k), in each band k, is realized in
medium-duration non-overlapping frames of 7' sec for fine
temporal resolution against the instantaneous changes of the
acoustic conditions due to noise changes and speaker’s motion.
An example is shown in Fig. 1, where the energy of the 3rd
(k = 3) bandlimited component of s(t) is approximated with
Ymin or YMin - given two real distant recordings from a two-
microphone linear array.

9. (]\2/1 ) computations are needed for each band because W[y i, Yok ]} #
Velymk, Yer]
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Fig. 2. Teager energies (top row), instantaneous amplitudes (middle row)
and instantaneous frequencies in Hertz (bottom row) of a 32 ms long frame
from the steady state of an instance of phoneme “ah”. Demodulation of the
3rd speech component (k = 3) is realized using: a) the clean source s(t)
(blue lines), b) the Ist channel y;(t) of a three-microphone linear array
whose signals are simulated using the Image Source Method (ISM) with noise
(SNR = 5dB) (red lines), and c) all the simulated channels (y1,y2,y3)
using the proposed MMD scheme (black lines). The figures on the right
column show the estimation errors, with the flat lines showing their averages.

III. MULTICHANNEL, MULTIBAND DEMODULATION

The kth resonance of a speech signal s(¢) can be modeled
by an AM-FM signal as

t
re(t) = ar(t)cos (/ wi(7) dT) | (6)
0
where ay(t) and wy(t) are its instantaneous amplitudes and
angular frequencies. Given a noisy observation y,, for s(t),
demodulation is realized based on the widely known Energy
Separation Algorithm (ESA) [13] formulas

~ \Ij[ymk]
Smoother approximations that are more robust to noise are
achieved by Gabor-ESA [6], which combines bandpass fil-

tering in the Teager energy operator as convolution with the
corresponding bandpass Gabor filter:

)

UYmi] = Ym * 9)* = Ym * k) Ym * Gi) (8)
Ulgmi] = Ym * G6)> = Ym * G6) Y * G5 9)

Herein, we incorporate the “denoised” energies W™ and
U™ within the Gabor-ESA framework for improved speech
demodulation. The energies are tracked with the proposed
multichannel scheme based on the M microphone array sig-
nals. U[y,,x] and [y, can be substituted by two “cleaner”
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Fig. 3. Extraction of MIA, MIF, and Fw modulation features on a noisy 32 ms
segment s(t). Gabor-ESA with 12 filters is employed for the demodulation
of each bandpass speech resonance sy (t) to its instantaneous AM-FM
parameters ag (t) and fx (¢).

versions:
2. ‘I’[ymk}» W[ka]

In response to (8) and (9) the cross energies are:

LW ymk, Yir)s Y UmksYgy,]  oF (10

(Y * 1) (Y * Gr) — (Y * gi) (Y * Gr) (11)
(Y * Gr) (Y * G) — (W * g) (Y * Gx) (12)

Figure 2 demonstrates an example of how the energy
of a bandlimited component of a clean utterance recorded
by a close-talk microphone is better approximated by the
multichannel energy W™ compared to W[y;] given the noisy
recordings (y1,%2,y3) of a distant three-microphone linear
array. Better estimations of the instantaneous amplitudes and
frequencies are also evident after applying the proposed Mul-
tichannel, Multiband Demodulation (MMD) scheme.

v [ymk s ygk]
\Ij[ynbka yék]

IV. IMPROVED MODULATION FEATURES

The estimation of instantaneous amplitudes ax[n] and fre-
quencies® fi[n] is realized following short-time processing in
frames of length L. As depicted in Fig. 3, first, each recording
Ym is convolved with a Gabor filterbank {gx(¢)}, k € [1, K].
Then, for each frequency band k, the corresponding multi-
channel energy is found, and based on that, the instantaneous
AM-FM parameters ai[n] and fi[n] are estimated using
ESA. To cope with singularities caused by small energies,
the instantaneous signals are smoothed by a median filter. In
this work, second-order modulation features are extracted by
measuring statistics over ag[n| and fi[n], namely (a) Mean
Instantaneous Amplitudes (MIAs) (b) Mean Instantaneous
Frequencies (MIFs), (c) Weighted Frequencies (Fw), and (d)

’Instantaneous frequencies fi[n] = wy[n]/27, k € [1, K] are measured
in Hz.
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Frequency Modulation Percentages (FMPs). MIAs and MIFs
are the short-time means of ax[n] and f[n]. Motivated by the
non-linear human perception of speech, MIAs are transformed
using a logarithm. MIFs are only scaled from the frequency
domain to the [0,1] range by dividing with f,/2. Fw features
are the micro-fluctuations of the instantaneous frequencies
around the center frequency of filter k, estimated as:

/Zak

n=0

Fuwy = Zak 1 fxln (13)

n=0

Finally, M Py, = By, /Fwy, where By, is the mean bandwidth
of fx[n] in band k, an amplitude-weighted deviation [4]. All
features are mean and variance normalized to cope with long-
term effects. Standardization is applied per utterance, across
filters for MIA in order to keep the relative information that
exists between the coefficients, and per filter for the rest.

To test the robustness of the improved modulation features
against their single-channel version, we simulate noisy far-
field speech by creating distorted versions of a sample of
clean TIMIT phonemes. Clean speech is convolved with room
impulse responses simulated using the Image-Source Method
(ISM) [1] to match the environment of a small room, while
white Gaussian noise is added to simulate the noisy back-
ground. Three microphones, arranged in a 30-cm equidistant
linear array, were assumed in the center of the room, three
meters away from the speaker. Figure 4 shows the relative
improvements gained for a selection of features. For each
phoneme and frequency band, estimation errors correspond to
the amount of mismatch of the features extracted on the noisy
signals against the features extracted on the clean source.

V. DSR ON SIMULATED AND REAL DATA

Several hybrid feature vectors are tested by combining
frequency modulation features (e.g., MIFs, Fw, and FMPs)
with the traditional MFCCs targeting improved performance
in challenging conditions. Any improvements gained by the
proposed MMD scheme are assessed and compared to other
multichannel processing methods like beamforming, in which
features are extracted on denoised signals.

A. DIRHA-English corpus

The employed DSR corpus [18] includes a large set of
one-minute sequences simulating real-life scenarios of speech-
based domestic control. The sequences were generated by
mixing real and simulated far-field speech with typical do-
mestic background noise. Real far-field speech was recorded
in a Kitchen-Livingroom space by 21 condenser microphones
arranged in pairs and triplets on the walls, and pentagon arrays
on the ceilings. 12 US and 12 UK English native speakers were
recorded on Wall Street Journal, phonetically-rich, and home
automation sentences. Clean speech was recorded in a studio
by the same speakers on the same material and convolved
with the corresponding room impulse responses to produce
simulated far-field speech. Overall, 1000 noisy and reverberant
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Fig. 4. Relative reduction (%) of demodulation error after using cross-Teager energy in Gabor-ESA. Root-mean-square errors are between: (a) MIA and (b)
MIF features on clean and noisy far-field speech. Clean speech corresponds to the central frames of 50 randomly selected instances for each of 16 TIMIT
phonemes uniformly selected from each phoneme category, while their far-field version have been simulated using the Image Source Method (ISM) for a
linear array with three microphones, in which Gaussian noise (SNR = 5 dB) was added.

utterances of real (dirha-real) and simulated (dirha-sim) far-
field multichannel speech were extracted by the sequences and
used for experimentation.

B. Experimental framework

13 MFCCs are derived from 40 Mel-spaced triangular filters
spanning the interval [0, f5/2]. Short-time analysis is applied
every 10 ms over 25 ms long speech frames that are Hamming
filtered and pre-emphasized. Cepstral mean normalization is
applied per utterance in order to cope with channel distortions.
A Mel-spaced filterbank of 12 Gabor filters with 70% overlap
is used for the extraction of AM-FM features in 32 ms
long mean and variance normalized frames shifted in 10 ms
steps. Both feature sets are appended with their first- and
second-order derivatives before their concatenation. MMD-
based modulation features are extracted using the channels
(LA1-LAG6) of the six-microphone pentagon array located in
the center of the Livingroom, while MFCC and single-channel
modulation features are extracted on the signals of the central
microphone (LA6) of the array.

State-of-the-art delay-and-sum beamforming is employed
for speech denoising. The array channels (LA1-LA6) are
beamformed using the Beamformlt tool [2], which is ex-
tensively used in several works for multichannel DSR and
provides reliable results based on blind reference-channel
selection and two-step time delay of arrival Viterbi postpro-
cessing.

An HMM-GMM recognizer is built using the Kaldi toolkit
[17]. Since our goal is to compare the different feature
sets, eliminating as much as possible other factors, we are
presenting results using “tril” acoustic models, that is tri-
phone modeling with no further feature transformation (e.g.,
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LDA, MLLT, and SAT ). GMM acoustic models are trained
on matched conditions using microphone-dependent contam-
inated data produced by convolving clean utterances with
various room impulse responses. The same microphones are
used for training and testing.

A trigram language model is used for decoding, trained on
the transcriptions of the training set of the corpus. Note that
training and testing are based on the scripts provided with the
database.

C. Results

Recognition experiments are conducted on the dirha-sim
and dirha-real datasets. Amplitude modulation features (MIAs)
are tested individually and compared to MFCCs as both of
them are energy-based features and expected to be correlated.
The results of Table I show that the combined features yield
significant improvements over MFCCs, for both simulated and
real data, with MIFs performing slightly better than Fw and
FMPs. The MMD scheme achieves improvements of 1%-3%
to all modulation features. “MFCC+Fw_mmd” yields 26%
relative improvement compared to MFCCs, achieving 48.4%
Word Error Rate (WER), which is the best score on average
across the datasets.

Notable improvements are observed after using beamform-
ing. As presented in Table II, recognition with MFCCs is
improved by 17%, while modulation features keep contributing
positively by reaching relative improvement of 18.8%. The
results show that beamforming may lead to better modulation
features for recognition rather than multichannel demodula-
tion. However, note that the latter lacks a signal alignment
stage in contrast with beamforming. Moreover, beamforming
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TABLE I
WER (%) USING TRIPHONE ACOUSTIC MODELS (TRI1) ON CONCATANATIONS (“+”) OF MFCCS WITH FREQUENCY MODULATION FEATURES (Fw, MIF,
FMP) AND ALTERNATIVELY WITH THEIR IMPROVED VERSIONS DERIVED BY THE PROPOSED MMD (“_MMD”) SCHEME. AMPLITUDE MODULATION
FEATURES (MIA), WHICH ARE DESIGNED TO WORK SIMILARLY TO MFCCS, ARE TESTED SEPARATELY.

[ tril

[[ MFCC [[ +Fw | + Fw_mmd || + MIF | + MIF_mmd || + FMP | + FMP_mmd || MIA | MIA_mmd |

dirha-sim 62.9 48.1 46 47.7 45.1 473 46.2 62.1 61.9

dirha-real 67.9 55.3 51.3 52.9 51.6 54.6 52.8 68.5 68.3

average 65.4 51.7 48.7 50.3 48.4 51.0 49.5 65.3 65.1

rel. reduction (%) - 21.0 25.61 23.1 26.1 22.1 24.3 0.2 0.5
TABLE I [6] D. Dimitriadis and P. Maragos, “Continuous energy demodulation meth-

WERS (%) AFTER DELAY-AND-SUM BEAMFORMING.

[ tril [ MFCC [ + Fw [ + MIF [ + FMP H MIA ]
dirha-sim 45.1 36.6 36.3 37.2 49.2
dirha-real 50.2 42.3 41.4 43.4 53.1
average 47.7 39.5 38.9 40.3 51.2

rel. reduction (%) - 17.2 18.8 154 -7.4

is expected to reduce some reverberation effects, which are
avoided in the analysis of the current work. Overall, the
moderate performance in both simulated and real data is
mainly due to lack of feature transformations for speaker
and environment adaptation. Improved results are expected by
employing non-linear transformations for modulation features.

VI. CONCLUSIONS

We have introduced a multi-channel energy tracking scheme
for energy-based demodulation targeting noise minimization
across the channels of a microphone array by selecting the
minimum Teager and cross-Teager energies. The latter is a
measure of interaction between two oscillators, used herein
as a multi-channel energy estimator. The obtained results are
promising: demodulation errors due to noise are decreased,
leading to improved AM-FM features that exhibit robustness
in DSR when combined with the complementary MFCCs.
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