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ABSTRACT

This paper proposes learning a linear map with local con-
tent modulation for robust content fingerprinting. The goal is
to estimate a data adapted linear map that provides bounded
modulation distortion and features with targeted properties. A
novel problem formulation is presented that jointly addresses
the fingerprint learning and the content modulation. A solu-
tion by iterative alternating algorithm is proposed. The al-
gorithm alternates between liner map update step and linear
modulation estimate step. Global optimal solutions for the re-
spective iterative steps are proposed, resulting in convergent
algorithm with locally optimal solution.

A computer simulation using local image patches, ex-
tracted from publicly available data set is provided. The
advantages under additive white Gaussian noise (AWGN),
lossy JPEG compression and projective geometrical trans-
form distortions are demonstrated.

Index Terms— active content fingerprint, modulation,
feature map learning, robustness

1. INTRODUCTION

Active Content Fingerprinting (aCFP) has emerged as a syn-
ergy between digital watermarking (DWM) and passive con-
tent fingerprinting (pCFP) [1]. This alternative approach cov-
ers a range of applications in the case when content modula-
tion is appropriate, prior to content distribution/reproduction.
Possible advantages may be seen in a number of applications,
including content authentication, identification and recogni-
tion.

Recently, theoretically it was demonstrated that the iden-
tification capacity of aCFP [2] under additive white Gaussian
channel distortions and `2-norm embedding distortion is con-
siderably higher to those of DWM and pCFP. Several scalar
and vector modulation schemes for the aCFP have been pro-
posed [3, 4] and have been tested on synthetic signals and col-
lections of images. Despite of the attractive theoretical prop-
erties of aCFP, the practical implementation of aCFP mod-
ulation with an acceptable complexity, remains an open and
challenging problem.

On the other hand in recent years, local, i.e., patch-based,
compact, geometrically robust, binary descriptors such as
SIFT [5], BRIEF [6], BRISK [7], ORB[8] and the family of
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Fig. 1. Local active content fingerprint learning (aFIL)
scheme. The linear modulation function is denoted as f1(.)
and the linear feature extraction function is denoted as f2(.).
The resulting fingerprint is the quantized feature.

LBP [9] became a popular tool in image processing, com-
puter vision and machine learning. These local descriptors
are also considered as a form of local pCFP.

However, up to our best knowledge, there is small amount
prior work on the modulation of local descriptors in the scope
of aCFP or DWM. In [10] an aCFP with a linear modula-
tion subject to convex constraint on the properties of the re-
sulting local descriptors was proposed, together with an op-
timal solution when the feature map is invertible. The main
open issues with the proposed optimal solution are related to
the assumptions about the linear feature map. The authors
in [11] addressed the general case from two distinct perspec-
tives. Firstly, they propose a direct approximation of the lin-
ear feature map and secondly they present a novel problem
formulation for the linear modulation and the constraints on
the properties of the resulting local descriptor. In the former
case, the used linear map is predefined and analytic, therefore
the open issues are related to the properties of the used linear
map that are crucial for the achievable modulation distortion
and the resulting feature descriptor.

This paper proposes to learn a linear feature map with lin-
ear aCFP modulation to reduce the modulation distortion and
explicitly regularize the features properties. The contributions
of the paper are: (i) a novel problem formulation for joint
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linear map learning and linear data modulation, (ii) an itera-
tive alternating algorithm with optimal solutions in the cor-
responding iterating steps, (iii) a convergence result for the
iterating sequence of the objective function values generated
by the iterating steps of the proposed algorithm and (iv) vali-
dation by a computer simulation using publicly available data
set of images under several image processing distortions, in-
cluding AWGN, lossy JPEG compression and projective geo-
metrical transform.

The paper is organized as follows. In Section 2 the prob-
lem is introduced, a short description of the local pCFP is
given and the local aCFP modulation is presented. In Section
3 the main result is stated. Section 4 is devoted to computer
simulation and Section 5 concludes the paper.

2. LEARNING LINEAR MAP AND MODULATION

This paper proposes joint linear feature learning and linear
modulation scheme named as local active content FIngerprint
Learning (aFIL). The aFIL scheme is shown in Figure 1. The
modulation is prior to the content reproduction and the de-
scriptor extraction includes feature mapping using a learned
liner map and quantization.

The core idea behind the aCFP modulation [3] is based on
the observation that the magnitude of the feature coefficients
before the quantization influences the probability of the bit
error in the descriptor bits. The descriptor bit flipping is more
likely for low magnitude coefficients. Therefore, it is natu-
ral to modify the original content by an appropriate modula-
tion and to increase these magnitudes subject to some distor-
tion constraint. Obviously, the modulation faces a trade-off
between two conflicting requirements of feature coefficient
magnitude increase for the probability of bit error reduction
and the modulation distortion. Fortunately, the low magnitude
coefficient are concentrated near zero and are easily affected
by a low distortion modulation.

Note that the local aFIL scheme is also applicable in the
context of global image descriptrs. Nevertheless, considering
either global or local image description, here a novel approach
is presented, alternatively to the scheme considered in [4],
[10] and [11]. Most importantly we highlight that the liner
map is learned from data with explicitly regularized features
properties.

2.1. Local pCFP: no patch modulation

Given a patch xo in the most general case, the local patch-
based features are extracted using a mapping function f2 :
<N×1 → <M×1, where M is the length of the descriptor.
Consider a linear function fo = f2 (xo) = Axo, where A ∈
<M×N is a linear map. Note that the map can be either pre-
defined, data independent and analytic or learned, data depen-
dent and content adaptive.

The mapping, followed by a quantization Q(.) results in
a quantized local descriptor denoted as bxo

= Q(fo). The
differences between the existing classes of local descriptors
are determined by the defined mapping f2 (.) and the type of
the quantization Q(.).

2.2. Local aFIL: patch modulation and learning
The analysis here is focused on the optimal solution with
learning linear modulation and feature extraction maps and
scalar quantizers.

Data adaptive linear modulation. We consider linear
aCFP modulation f1 : <N×1 → <N×1, x = f1 (xo) = Zxo,
with Z ∈ <N×N .

Data adaptive linear feature extraction. The considered
feature extraction is linear fo = f2 (xo) = Axo, where A ∈
<M×N ,M < N and is learned from data.

Binary quantization. Let Axo,Axe,Axn ∈ <M ,
where xn and xe are the modulation and the signal pro-
cessing distortions, respectively. The quantization is defined
as by = Q (f), where f ∈ <M , Q(a) = sign(a) = 1, if
a ≥ 0 and 0, otherwise. The content fingerprint extracted
from original content is bxo = Q(Axo), from non-distorted
modulated content is bx = Q(Axo + Axn) and from dis-
torted modulated content is by = Q(Axo + Axn + Axe).

3. LOCAL ACTIVE CONTENT FINGERPRINT
LEARNING (AFIL)

Assume that a data set Xo = [xo,1,xo,2, ...,xo,L] ∈ <N×L
and a corresponding target feature matrix L = [l1, l2, l3, ..., lL]
∈ {−1, 1}M×L is given, with a total of L available data sam-
ples. The learning of a linear feature map for aCFP with
linear modulation is addressed by considering the following
problem formulation:

min
X,A

g(X,A) =min
X,A

Ω1(Xo,X) + Ω2(A)

subject to

(AX)� L ≥e τ11T ,

(1)

where� denotes Hadamar product, ≥e denotes element-wise
inequality, X are the modulated data and the matrix A is the
linear map. The terms Ω1(Xo,X), Ω2(A) and the inequity
(AX)�L ≥e τ11T induce constraints on modulation error,
the properties of the linear map A and the modulated features
Axi, respectively.

The penalty Ω1(Xo,X) is defined as Ω1(Xo,X) =
λ1

2

∑L
i=1 ‖xo,i−xi‖22+ λ2

2

∑L
i=1 ‖A(xo,i−xi)‖22 and Ω2(A)

is defined as Ω2(A) = λ3

2 ‖A‖
2
F −λ4 log |det ATA|, respec-

tively, where λk are Lagrangian multipliers ∀k ∈ {1, 2, 3, 4}.
The ‖A‖F penalty helps regularize the scale ambiguity in the
solution of (1). The log |det (ATA)| and ‖A‖2F are func-
tions of the singular values of A and together help regularize
the conditioning of A.
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Problem (1) is non-convex in the variables A and X. If the
variable A is fixed, (1) is convex, conversly if X is fixed (1)
is convex again. This paper proposes an alternating algorithm
that has two steps and solves (1) by iteratively updating A
and X. In step 1 (Linear modulation) given the linear map
A, the modulated data X, are estimated by a global optimal
solution. In step 2 (Liner map estimate) given X the linear
map A is estimated by an global optimal solution.

3.1. Step 1 : Linear modulation

Given the linear map At−1, note that (1) is separable for all
xti, and per individual xti reduces to the following problem:

min
xt
i

λ1

2
‖xo,i − xti‖22 +

λ2

2
‖At−1(xo,i − xti)‖22

subject to

(At−1xti)� li ≥e τ1,

(2)

where xti is the modulated data that has to be estimated and
the modulation distortion is related to the error ‖xo,i − xti‖22.
Introduce an auxiliary variable as v ∈ <M and define an
element-wise indicator function I(v(m)) = +∞, if v(m) >
0 and I(v(m)) = 0, if v(m) = 0, then (2) equivalently is:

min
xt
i,v

λ1

2
‖xo,i − xti‖22 +

λ2

2
‖At−1(xo,i − xti)‖22+∑

m

I(v(m))

subject to

(At−1xti)� li − τ1− v =e 0.

(3)

The augmented Lagrangian of (3) is L(xi,v, s) = λ1

2 ‖xo,i −
xti‖22+λ2

2 ‖A
t−1(xo,i−xti)‖22+

∑
m I(v(m))+sT ((At−1xti)�

li−τ1+v)+ ρ
2‖(A

t−1xti)�li−τ1+v‖22. Denote for clarity
and simplicity xo = xo,i,x = xti, l = li and A = At−1. The
Alternating Direction Method of Multipliers (ADMM) [12] is
used for (3) and the problem is solved by iterating with the
following 3 steps.

xk = argmin
xk

ρ

2
‖(Axk)� l− τ1− vk−1 + sk−1‖22+

λ1

2
‖xo − xk‖22 +

λ2

2
‖A(xo − xk)‖22

vk = max((Axk)� l− τ1 + sk−1,0)

sk =sk−1 + (Axk)� l− τ1− vk.

(4)

Note that the problem related to xk has a closed form solution
as:

xk =B†BT (ρAT ((τ1− vk−1 + sk−1)� l)+

(λ1I + λ2A
TA)xo),

(5)

where B = (ρ + λ2)ATA + λ1. The matrices B and the
pseudo-inverse B† = (BBT )−1BT are computed only once
and reused in the solutions for all xk and for all xti, i ∈ I.

Since (3) is equality constrained convex optimization
problem over the non-negative orthan <M+ the procedure with
the ADMM (4) gives the optimal solution to (3).

3.2. Step 2 : Linear map estimation

Let the original data Xo, modulated data X and the linear map
At−1 be given, then (1) reduces to the following problem:

min
At

λ2

2
‖At(Xo −Xt)‖22 +

λ3

2
‖At‖2F−

λ4 log |det((At)TAt)|
subject to

(AtXt)� L ≥e τ11T .

(6)

Again by introducing an auxiliary variable W ∈ <M×L,
problem (6) equivalently has the following form:

min
At,W

λ2

2
‖At(Xo −Xt)‖22 +

λ3

2
‖At‖2F−

λ4 log |det((At)TAt)|+
∑
m,l

I(W (m, l))

subject to

(AtXt)� L− τ11T −W =e 00T .

(7)

Problem (7) is approached similary as in the previous subsec-
tion, therefore, first denote A = At and X = Xt then the
augmented Lagrangian to (7) is evaluated as L(A,W,Q) =
λ2

2 ‖A(Xo − X)‖22+
∑
m,l I(W (m, l)) + λ3

2 ‖A‖
2
F− λ4 log

|det(ATAt)|+ ST
(
(AX)� L− τ11T −W

)
+ ρ

2‖(AX)�
L− τ11T −W‖2F .

Denote G = λ3

2 I + λ2

2 (Xo − X)(Xo − X)T + ρ
2X �

LLT � XT and Zk−1 = τ11T −Wk−1 + Sk−1 then the
ADMM steps for the solution of (7) are the following:

Ak = argmin
Ak

Tr{AkG(Ak)T −AkX(Zk−1)T }−

λ4 log |det((Ak)TAk)|
Wk = max((AkX)� L− τ11T + Sk−1,0)

Sk =Sk−1 + (AkX)� L− τ11T −Wk.

(8)

Note that for the problem related to Ak a closed form solution
exists as:

Ak =
1

2
U
(
ΣLXZ + (ΣLXZ + λ4I)

1/2
)

VL−1, (9)

where UΣLXZVT is the singular value decomposition of
L−1X(Zk−1)T , LLT is Cholesky factorization of G. Due
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to space limitations we refer to the complete proof given in
[13].

Since (7) is convex problem, the iterative sequence by the
solutions of the proposed ADMM method (8) converges to
the optimal solution of (7).

3.3. Algorithm analysis: local convergence

This section presents the result on the local convergence of
the proposed alternating algorithm.

Lemma 1: Given initial {Xo,L}, the sequence {At,Xt}
generated by the proposed algorithm is monotone decreas-
ing i.e., g(At,Xt) ≤ g(At−1,Xt) ≤ g(At−1,Xt−1), the
function g(A,X) is lower bounded therefore the alternating
algorithm converges to an finite value denoted as g∗

Proof: Given At−1, g(At−1,Xt) is convex and the global
optimal solution of g(At−1,Xt) is given by the iterative solu-
tion (4) therefore g(At−1,Xt) ≤ g(At−1,Xt−1). Given Xt,
again g(At,Xt) is convex and the global optimal solution of
g(At,Xt) is given by the iterative solution (8), combining
the both results we have that g(At,Xt) ≤ g(At−1,Xt) ≤
g(At−1,Xt−1), implying that the sequence {g(At,Xt)} is
monotone decreasing sequence. The result that the function
g(At,Xt) is lower bounded is given in [13]. Since any lower
bounded, monotone decreasing sequence is a convergent se-
quence then the proposed alternating algorithm converges to
a local optimal value denoted as g∗ �

4. COMPUTER SIMULATIONS

A computer simulation is performed to demonstrate the ad-
vantages of the local aFIL scheme over aCFP and pCFP, under
several signal processing distortions, including AWGN, lossy
JPEG compression and projective geometrical transform. The
goal is to achieve the same performance as the aCFP method
proposed in [11], however with considerably lower distortion.

The UCID [14] image database was used to extract local
image patches. The ORB detector [8] was run on all images,
and
√
N ×

√
N pixel patches, with

√
N = 31 were extracted

around each detected feature point. The features were sorted
by scale-space, 30 patches were extracted from individual im-
age.

We consider three scenarios: pCFP, aCFP [11] and aFIL
for the computer simulation. In order to make fair comparison
between pCFP, aCFP and aFIL we use one predefined matrix
A for the pCFP and aCFP scenario. For the aFIL we use the
same matrix A to initialize the proposed algorithm and define
the target labels as L = sign(AXo). Half of the total 1000
image patches are used for aFIL learning with target feature
L.

Three measured quantities are used for evaluation:
1) the modulation distortion, 2) the probability of bit er-
ror and 3) the modulation level. The first is defined as

pe
pCFP aCFP aFIL

mL 10 60 10 60
DWR 33.8 4.7 36.1 6.9

0dB .224 .217 .064 .216 .063
AWGN 5dB .150 .142 .022 .14 .022

10dB .095 .084 .005 .085 .004
20dB .034 .018 0 .019 0

0 .082 .074 .025 .075 .024
QF 5 .082 .040 .015 .041 .015

10 .028 .015 .012 .015 .011
Proj., QF=5 .058 .049 .048 .049 .047

Table 1. The DWR and pe using varying aCFP modulation
under varying AWGN noise, JPEQ quality factor and Projec-
tive transformation with QF= 5.

DWR = 10 log10

(
2552

∆

)
, ∆ = 1

N ‖x − xo‖22. The sec-
ond one is defined by the average probability of bit error
pe = 1

L

∑L
i=1 1{bx (i) 6= by (i)} with L = 256 bits, where

1{.} is indicator function that returns 1 if the argument is true
and 0, otherwise. The third measure is the modulation level
mL, expressed in percentage mL = K

L 100, 1 ≤ K ≤ L.
This measure represents the fraction of coefficients xo that
are modified. At single modulation level, the modulation
threshold τ is defined as τ = max1≤i≤K |s (i) |, where so,
|so (i) | ≤ |so (j) |, 1 ≤ i ≤ j ≤ L is the sorted vector for the
absolute values of Axo.

AWGN: The results from a single patch was obtained as
average of 100 AWGN realizations. Four different noise lev-
els were used, defined in PSNR= 10 log10

255
σ2 are 0dB, 5dB,

10dB and 20dB. Two modulation levels (mL) were used 10
and 60.

Lossy JPEG compression: Three JPEG quality factors
(QF) 0, 5 and 10 were used. The modulation levels (mL) that
were used are 10 and 30.

Projective transform with lossy JPEG compression: A
projective transformation P ∈ <3×3 with parameter matrix:

P =

 1.0763 0.0325 0
0.0119 1.09 0
−24.32 −70.37 1

 ,
was used, followed by a lossy JPEG compression with QF=5.
The modulation levels (mL) that were used are 10 and 60.

Table 1 summarizes the average results for 500 image
patches that are used for testing.

The results show that the pair of highestDWR and lowest
pe is achieved for the aFIL scenario under all types of noise.
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5. CONCLUSION

This paper presented local patch based active content FInger-
print Learning (aFIL) with objective to estimate data adap-
tive linear map that provides small active Content FingerPrint
(aCFP) modulation distortion and features with targeted prop-
erties. Novel problem formulation was presented that jointly
addresses the fingerprint learning and the content modulation.
A solution by iterative alternating algorithm was proposed. A
global optimal solutions for the respective iterative steps were
proposed, resulting in convergent algorithm with locally opti-
mal solution.

The computer simulation using local image patches, ex-
tracted from publicly available data set was provided. The
results demonstrated that the proposed algorithm achieves
small pe under different and severe signal processing distor-
tions. More importantly the introduced modulation distortion
is smaller by using data adapted linear feature map compared
to the modulation distortion by linear feature map without
data adaptation.

A study on the overall performance for larger image col-
lection, together with extensions considering other priors
without target features is left for our future work.
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