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ABSTRACT

The continuing drive for better rehabilitative healthcare
hinges on the availability of sensor data which can be shared
and analysed. This leverages on the w idespread
communications network to provide an integrated health
management environment. For this paper, we delineate our
current work in sensorizing rehabilitative tests of upper limb
movements . Where previously we applied data driven
analysis, we now employ time-frequency methods to provide
a better analytical basis for our derivations. The use of
Matching Pursuit algorithm in biological signals has
concentrated on brain signals and much less on human
motion. Thus we contribute to efficacy of the algorithm by
employing it on rehabilitative data collected from widely
available sensors. We describe how w e obtained the
parameters based on pre-analysing an available data set. By
selecting the most useful signal constituents and applying this
to signal denoising, we are able to better classify the
condition of a patient automatically - which shows
encouraging promise in the quest for integrative healthcare.

Index terms - Matching pursuit, rehabilitation,
accelerometer, instrumented objects.

1. INTRODUCTION

The seemingly never-ending demand for connectivity has
seen the proliferation of consumer devices like smartphones,
tablets and laptops. Together with lifestyle monitoring
devices like smartwatches and fitness trackers, these have
seen the proliferation of networks and sensors and driven
down their costs and sizes. Thus initiatives like Health 4.0 [1]
seek to enhance traditional clinical practices which devolves
the point of consultation and care away from traditional
centralised facilities like clinics and hospitals. However there
is sti l l the need for proper clinical tests, assessments and
treatment but these can then be administered remotely and can
even be customized if necessary. Data can be collected, and
analysed on a large scale to detect trends and anomalies. This
being the case, we need to use established rehabilitative tests
which have undergone rigorous ratification processes. In a
networked environment, this is crucial to ensure that proper
care is consistently dispensed to achieve  consistent results for
data analytics.

Although our focus here is on a particular test our
approach can be easily generalized to other tests of a 
rehabilitative nature. As these tests pertain to human
movements and the usage of objects employed for the
activities of daily living (ADL), our work will have a wide
range of applications and our findings are important for
further development of devices which wil l  be used for long-
term monitoring and assessment of rehabilitation progress.

In a recent review [2], one of the most commonly used
tests is the Action Research Arm Test (ARAT) devised by

Lyle [3]. It is a test of performance designed to measure the
recovery of upper limb function subsequent to injury to the
cerebral cortex. It can be used to evaluate treatment outcomes
as well as monitor its progress. Furthermore i t can be
conducted quickly and is also dependable. The test prescribes
the movements of several objects used in the ADL in specific
ways. In doing so, the limb movements in grasp, grip and
pinch actions will be assessed. In many cases, sensors are
directly  attached to  the subject in an attempt to record signals
from such fine movements. However a common difficulty
among these methods are that they are intrusive and may
impede motion. On the other hand, using video gives readings
that are intrinsically noisy and the effects of variable lighting
and occlusions have to be dealt with.

Our setup involves implanting sensors into the objects
used in rehabilitation with the accruing benefits:
i) we have the abil i ty to sense fine motion and the force
applied by the subject and ii) the need to mount sensors on the
person is done away with.

In Section 2 we describe the motivation for our approach
as well as the background material. Section 3 outlines our
physical setup followed by the signal  analysis theory in
Section 4. Our experimental results are presented in Section
5 and we summarize our discussion with conclusions in
Section 6.

2. ASSESSING LIMB FUNCTION AND SENSORS

In this section we outline the motivation for our work, and
present the case for having bespoke instrumented objects be
deployed in standardised rehabilitative tests.

2.1      Assessing limb function

When designing tests of limb function and movement, there
needs to be a protocol for their administration so as to ensure
repeatable, quantitative and objective measurements.

Presently the prevalence of these tests are scored visually, 
which interposes a degree of subjectivity and does not allow
subtle motions to be noticed. Besides, the unvarying nature of
these assessment activi ties bring on inattentiveness and human
errors. All these motivate for automated test monitoring by 
electronic means, by instrumenting the objects used in these
tests.

Yozbatiran et al. [4] further regulated the ARAT by
explicitly stating the positions of the objects and the
dimensions of the supporting furniture in the test. They also
specified the scoring by recording the timing and quality of
the movement performed. However the measure of quality
was mostly descriptive in nature being based on visual
observations.

In [5], Lee et al . reported on work done with the
instrumented device outlined in this paper, deploying healthy
patient simulators. For the sake of continuity in discussion,
parts of their paper have been used here.

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 464



We seek to learn the factors that account for the
assessment scores because these scores are awarded
subjectively and should be incorporated into an electronic
health system to provide a seamless flow of information. This
can be done by supervised learning on features obtained from
electronic signals generated during these tests.

These features can be derived by analysing biomedical
signals, decomposing them into their constituent parts.
However, signals derived from human movements are mainly
nonstationary and thus fixed basis signal decomposition
cannot give good results. Indeed, in [6] a chirp and impulse
signal gave the same spectral diagram.

To overcome this, one approach is  to use data driven
decomposition [5], but the main drawback has been the
inability to describe these signals analytically.

In time-frequency (TF) analyses for biomedical signals,
Baumgartner et al. [7] suggest that w ith proper parameters, 
Matching Pursuit (MP) can give optimal results as well as an
analytical TF description of the structure in a signal. However
as discussed in [7]  as well as in [8], much of prior work
involving MP was for electroencephalograms (EEG). There
are much less applications of MP for human movements,
indicating there is scope of work in this area.

2.2      Sensors for motion sensing

Typical electronic consumer devices have a variety of motion
sensors built into them. Smartphones have gyroscopes and
accelerometers built into them as do smart watches, fitness
trackers and gaming devices.

Using these low cost devices to measure movements seem
an attractive option as the data interface is standardized and
the results can be obtained quickly as can be seen in the
l i terature. However consumer devices have the following
problems: i) they have short life spans, where typically a new
model appears the next year. ii) the software required to for 
data interfacing can change with upgrades in an operating
system. iii) there is no control over the power source or
product size and weight. Smartphones are getting larger w hile
other devices are getting smaller  and difficult to charge. A
bespoke design is  called for, which allows us to produce
results that go beyond mere proofs-of-concept to actual
products.

This provides the motivation to instrument an object used
in the ARAT, by incorporating accelerometers and force
sensors which are tw o types of sensors not often used
together. To reiterate the advantages: these are the ability to
sense fine motion and the force applied by the subject, the
need to mount sensors on the person is done away and the
online application is guaranteed through adjustable sampling
frequencies. We describe our setup in the next section.

3. EXPERIMENTAL SETUP AND TRIAL CONDUCT

We now outline how Test4 of the ARAT Grasp Subtest
is implemented and describe some initial results. This test 
requires grasping a cube (wooden) measuring 7.5 cm all
around. This object which we will denote the Cube, is
displaced from a given point, directly to another point. As
shown in Fig. 1, the three main parts of our instrumented
object system are a:

i) Set of resistive force sensors used to measure forces
imposed on the faces of the Cube.

ii)   Triaxial accelerometer to measure motion. 
iii) Microcontroller to convert force sensor and accelerometer

readings, and transmitting the data to a workstation.

The sensor readings are sampled at 30 times per second so
that a maximum frequency of 15 Hz can be recorded reliably.
Pre-filtering is not done to prevent removing important
information.

3.1     ARAT scoring and test subjects

In Fig. 2 we note the Cube being gripped, held vertically and
moved. The ARAT scoring uses a four point scale, from 3 for
satisfactory completion to 0 which is non-completion. A score
of 3 indicates completion of the task within 5 seconds with
appropriate hand, arm and posture movements detailed in [4].

A score of 2 is given when the subject completes the task
“with great difficulty and/or takes abnormally long time”,
from 5 to 60 seconds.

For a score of 1 which indicates partial completion, the
timing w ould be greater than 60 seconds. Also being able to
just grasp, hold and l i ft the Cube would be sufficient to
warrant this score.

However a score of 0 indicates any of the following: i) 
inability to perform any part of the task within 60 seconds. ii)
inability to grasp the Cube within the time period. i i i )  subject
does not use the fingers to grasp the Cube or use another hand
or mechanical support to manipulate the Cube.

In all, 34 patients w ho have had a history of stroke and
undergone rehabilitation participated in the trial. This was
conducted in a hospital over a period of 60 days.

Each patient would perform a set of ARAT motions in one
session, up to 3 iterations, if possible. For each session, the
data is  recorded continuously. It is then segmented manually
into its component trials. An significant point to note is that
the score is awarded on a session basis which implies some
kind of averaging is done over the trials. Besides, the sessions
were recorded over a period of time and different therapists
performed the scoring so some variability is induced in the
scores, even though briefings were conducted.

Fig. 1.  Hardware block diagram of the embedded sensor system
in the Cube. Dotted lines indicate optional portions.

Fig. 2. ARAT Cube orientation with respect to observer, in
background.
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Fig. 4. Plot of generated Gabor atom frequencies, desired and
fitted with 5th order curve. Inset shows a typical Gabor
waveform.

(1)

3.2      Qualitative results

In Fig. 3 we plot the signals from the force sensors recorded
for two subjects with a score of 1 to show how the sensors
can detect nuanced movements. These are lines with magenta
‘.’  and blue ‘" ’ markers. Initially they take on values that are
near zero as they record the force exerted by the fingers on
the Cube grasping surfaces.

The line with the red ‘+’ marker indicates the force imposed
on the bottom sensor by the w eight of the Cube when it is at
rest. As the Cube is lifted, the value goes to zero and this
serves to indicate the beginning and end of a move. This
timing cue permits automatic segmentation of the signals so
as to obtain an accurate measurement of the period of the
movement. For this signal in  Fig. 3, another observation is
that the subject may drop rather than place the Cube on the
platform. Also the bottom of the Cube may briefly touch
another object during the move.

4. METHODOLOGY

The MP theory will be described in this section, along
with the identification of the important parameters used.

4.1      Matching Pursuit Algorithm

We cover the MP algorithm, based on the work by Mallat and
Zhang [9]. It decomposes a signal in a suboptimal, nonlinear
and i terative manner. The result is a sum of basis functions
(or atoms) selected from a highly redundant set of functions,
termed a dictionary. Each iteration process selects the atom
that gives the largest dot product with the signal or its
residual . Subtracting the signal from the atom gives a
residual, to w hich the same process is applied with another
atom until a stopping criterion is reached.  

In our application, we use Gabor atoms, which are
Gaussians modulated by a sinusoid and described by: 

ãg (t) = K(ã)e  cos (ît + ö)!ð((t ! u)/s)

where s, u ,î ,ö are the scale, time translation, frequency of
modulation and phase. K is a normalizing constant so that

ã||g || = 1. The scale s determines the extent of the atom. For a
signal f with N samples, the decomposition at iteration m can

be expressed as:

n nf =      C g  + R fm

n nwhere C  is <R f, g > the dot product of the residue R f at stepn n

nn with the atom g  selected at that step and R f = f. This atom0

is chosen from a dictionary:

1 2 GD = {g  g  ...g }

which is an N × G matrix and the N × 1 vectors g are made up
of values of the atom from (1). The derivation of number of
atoms G in the dictionary is explained in Section 4.2.

This dictionary is overcomplete in that it has more atoms
than is needed to explain the signal structure, so an
optimization process is needed to select those the relevant
atoms. For this version of MP we use, the atom is selected in
a greedy manner according to:

n ãg  = argmax | <R f, g > |n

            ãg  0  D

where at every iteration, the selected atom is the one which
gives the largest absolute value, of the dot products between
the atoms in the dictionary and the signal residue.

After decomposition, as explained in [8], the Wigner-Ville
distribution (WVD) can be used to display the energy
distribution of the signal across the TF domain. Because of the
manner of decomposition, the cross terms effect of the WVD
for other types of signals is absent.

We now describe how initial data analyses are used to set
the parameters s, u, î and for the MP decomposition

4.2      Parameter settings for Matching Pursuit

We also know from our previous work, the movement of
interest lies in the frequency range of 2 Hz  to 10 Hz. We
develop a script to generate the frequencies of interest
automatically and here we use 50 frequencies, of which 80%
lie in the 2-10 Hz range. The frequencies are linearly
distributed with two breakpoints, to which a 5  orderth

polynomial was fitted to generate the final frequencies.
The plot of the frequencies generated with a typical Gabor

waveform is shown in Fig. 4.

As we are w orking with fixed length dictionaries, this
length has to be determined as the trials capture varying
length signals. Of the 78 trials, a statistical analysis shows that
the mode of signal length is 72 samples. Since the MP works
optimally for powers of two, we use a sample length N of 128
which corresponds to a time of  4.27 seconds, which is more

Fig. 3. Force sensor plots for score of 1 - top- Cube is dropped, not
placed, bottom- Cube brushes against surface but is placed, not
dropped. Marker with red + is bottom sensor plot, other markers are
force exerted by fingers.
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than enough to complete a movement. In our application, the
signals do not have sudden changes and so we ignore the 
phase ö. Signals shorter than this are zero-padded while
longer ones are truncated.

2The scales s = 2 , 1 # j # log N. We set the translation uj

to one-tenth of 128 samples, bearing in mind that in terms of 
time, we are sampling the signal at 0.427 (128/30Hz)/10
seconds. With these, our dictionary consists of  3958 atoms. 

We use 40 iterations to decompose a signal and consider
that the residual R f after  these iterations as noise. Them

considerations for deciding on the threshold for noise is
complex, but here we let the denoised signal for m = 40 be:

n nf =      C g^

Another benefit in the use of Gabor atoms is that the signal
can be reconstituted to its original sample length by just
removing the extraneous atoms.

5. INITIAL ANALYSIS AND RESULTS

I n this section we present some initial results followed by
the results of denoising in conjunction with classifying a
move.

5.1      Time Frequency plot

A typical Wigner-Ville TF plot is shown in Fig. 5. The darker
areas of the plot denote regions where the energy distribution
is higher. So for example, the x-axis plot shows a burst of
energy at approximately the 11 sample mark across
frequencies from 0 to about 10 Hz. There is also a relatively
prominent wave of about 9 Hz lasting from sample 7 to 36. 

The z-axis on the other hand, shows bursts of low
frequency energy at equal intervals at approximately samples
6, 11, 15 and 21 which last for approximately 2 sampling
periods.

Thus the triaxial signal structure is  clearly mapped out in the
plots and gives much insight into the evolution of the signal.

5.2      Significant axis of movement

In our earl ier work [10] we employed features based on a 
single signal to train a classifier which automatically assigned
the scores based on pre-computed thresholds. We now use the

the Waikato Environment for Knowledge Analysis (WEKA)
[11] tool to learn a hierarchical tree based classifier. 

Of the three axes of movement, the z-axis data which
corresponds to the side-to-side movement of the Cube (as
shown in Fig. 2), showed results more correlated with the
score. On particular, we observed that the signal’s coefficient
of variation, which is the standard deviation divided by the
mean value gave useful results. We proceed from there by
using three different z-axis signal features. First, by taking
away the signal mean MEANS, we compute the root mean
squared (RMS) value of the AC component of our signals.
This quantity gives an indication of the energy spent in the
movement. We separate the RMS value of the signal  by
denoising it as in (3) to obtain the component explained by the
signal, RMSS and that of noise, RMSN.

In our  data  set,  an identification (ID) code is assigned to
each trial and has the form SCC_MM_T where S is P for our
subjects who were patients, CC  the  subject  code,  M M   the
movement type, which has a value of TS for our subjects and
T  being the trial number, 1 to 3. Some results are show n in
Table 1.

Table 1 RMS signal/noise value using MP denoising of
accelerometer readings for patients with score 1 and 2. Only the 3rd

or z-axis shown.

Subject Axis RMS signal/noise score

P27_TS_1 3 14.45 5.47 1

P27_TS_1 3 14.73 6.25 1

P27_TS_1 3 12.78 5.12 1

P28_TS_2 3 8.85 3.92 2

P28_TS_2 3 9.11 5.23 2

P28_TS_2 3 11.46 5.54 2

Next we present the results of our automated scoring. Because 
there were not enough volunteers, only two score 1 sessions
were recorded. One of them got this score because the Cube
was improper handled. It should be noted that out of 78 tr ials,
31 trials were scored at 3, 38 scored at 2, 6 scored at 1 and 3
scored at 0, so that there is considerable statistical bias in
results. This is depicted in the results shown in the last row of
the confusion matrices in Tables 2 and 3.

Table 2 Confusion matrix on per-trial scoring using the RMSS
attribute. Values are original (underlined) then denoised. Bottom row
shows the number of trials receiving the score. used.

            Actual
 Predict

3  2  1 0

3 22 / 24 6  / 8 2 / 2 1 / 1

2 7   / 7 32/ 29 1 / 1 2 / 0

1 2   / 0 0  / 0 3 / 3 0 / 1

0 0   / 0 0  / 1 0 / 0 0 / 1

# actual scored 31 38 6 3

From this, we note that the accuracy for trial scoring which
uses unfiltered signals is  ( total correct/total trials) =
(22+32+3)/78 = 73% . For MP denoised signals, we have
(24+29+3+1)/78 = 71% so a slight improvement comes from
denoising, but not statistically significant. The resulting
decision tree (which is not shown) has 4 binary levels and 5
leaves.

 Next, using the RMSS, RMSN and MEANS features in
Table 3, for the unfiltered and MP denoised signals

Fig. 5. Time frequency plot with the signal superimposed. Darker areas
denote higher energy regions. From top, signals are x ,y,z axes. Left y-axes
denote the frequencies in Hz, right y-axes the amplitude of the signal
superimposed, in 8 bit digital values.
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MEANS <= 127.67
|   RMSS <= 7.17: score: 3
|   RMSS > 7.17 score: 2
MEANS > 127.67
|   RMSN <= 2.48 score: 3
|   RMSN > 2.48
|   |   RMSS <= 9.56
|   |   |   MEANS <= 130.65 score: 2
|   |   |   MEANS > 130.65
|   |   |   |   MEANS <= 134.12 score: 3
|   |   |   |   MEANS > 134.12 score: 2
|   |   RMSS > 9.56
|   |   |   RMSN <= 7.7 score: 0
|   |   |   RMSN > 7.7 score: 3

respectively, we have (24+35+2)/78 = 78% and (28+35+2)/78
= 83% so now the MP denoised signal gives a better
classification rate, significantly better than using one feature
alone. The classification tree used, in Table 4 has 5 binary
levels and 8 leaf nodes.

Table 3 Confusion matrix on per-trial scoring using
RMSS/RMSN/MEANS attributes.  Values are original (underlined)
then denoised. Bottom row shows the number of trials receiving the
score.

            Actual
 Predict

3  2  1 0

3 24 / 28 3  / 3 3 / 2 3 / 1

2 7   / 2 35 / 35 1 / 4 0 / 0

1 0   / 0 0  / 0 2 / 0 0 / 0

0 0   / 1 0  / 0 0 / 0 0 / 2

# actual scored 31 38 6 3

In summary, the steps to automatical ly score a test using MP
are:

i) Preprocess the accelerometer signals using MP.
ii) Compute the MEANS, RMSS and RMSN values.
iii) Classify the signal according to the following set of  
     rules in Table 4 based on the tree obtained.

Table 4 Classification tree of automated scoring using the
RMSS/RMSN/MEANS features.

6. CONCLUSIONS

In summary, we attempted to automatically award a score
to a subtest from Test4 of the ARAT by using data from a
triaxial accelerometer. The z-axis, which corresponds to the
side by side movement of the Cube, appears to be visually
more prominent to the assessor. We compared the
effectiveness of signal  denoising using MP on the following
features of the z-axis accelerometer signal: the root mean
squared value signal, its noise and the mean signal value,
singly and in combination.  The denoising operation here
differs from traditional filtering which is a convolution across
all frequencies. Here it can be more selective and is an area to
explore.

It is worth recalling from Section 3.1 that we are
undertaking to objectify w hat is basically a subjective rating,
awarded by different scorers without a way of normalizing
results. This shows the possibi l i ty of obtaining features from
a subjectively scored rehabilitative test to derive an objective
assessment. This data can then be aggregated, used as input

for other kinds of analytics, as part of an integrated healthcare
scheme.

Subsequent work would require the analyses of other
accelerometer signals, as well as other types of time frequency
features for more discriminative power. There is also the need
to gather more subjects with a more even distribution of
scores for  better validation of th results. A more extensive
briefing would be needed on the scoring procedures for
clinicians serving as scorers.
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