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Abstract—A random Phase Center Motion (PCM) technique
is presented in this paper, based on Frequency Modulated
Continuous Wave (FMCW) radar, in order to suppress the angle-
Doppler coupling in Time Division Multiplex (TDM) Multiple-
Input-Multiple-Output (MIMO) radar when employing sparse
array structures. The presented approach exploits an appar-
ently moving transmit platform or PCM due to spatio-temporal
transmit array modulation. In particular, the work considers a
framework utilizing a random PCM trajectory. The statistical
characterization of the random PCM trajectory is devised, such
that the PCM and the target motion coupling is minimal, while
the angular resolution is increased by enabling the virtual MIMO
concept. In more details, this paper discusses sidelobe suppression
approaches within the angle-Doppler Ambiguity Function (AF)
by introducing a phase center probability density function within
the array. This allows for enhanced discrimination of multiple
targets. Simulation results demonstrate the suppression angle-
Doppler coupling by more than 30 dB, even though spatio-
temporal transmit array modulation is done across chirps which
leads usually to strong angle-Doppler coupling.

I. INTRODUCTION

Sparse array structures have attracted a lot of atten-
tion within Multiple-Input-Multiple-Output (MIMO) radar re-
search, since they are cheaper than their dense array counter-
parts of the same apertures due to lower system components.
The key motivation for using sparse array structures is its
capability for transmitting orthogonal sequences from each
transmitting element, such that the receiver can discriminate
between the different radiation origins and a filled array can
be virtually constructed [1]. A low cost approach of achieving
orthogonality among different transmitters is the utilization
of Time Division Multiplex (TDM) MIMO, where only one
transmitter is active at a time and therefore the transmitted
signals are orthogonal with respect to time. Works like [2] have
developed a low cost Frequency Modulated Continuous Wave
(FMCW) radar by switching the transmitters and receivers
across FMCW chirps in a linear fashion. The consecutive
switching scheme of transmit-receive-pairs yields a simple
Discrete Fourier Transform (DFT) based received processing
for resolving different angle of arrivals. The sidelobe sup-
pression of the backscatter is addressed by virtual antenna
overlapping; this decreases the virtual array aperture and
therefore the angular resolution [2]. The authors in [3] have
used a linear switching scheme like [2] in an inter-chirp
modulated mechanism. This is mainly because linear switching
of antenna elements across pulses results into angle-Doppler

coupling [2].
Works like [4]-[7] have addressed the aforementioned coupling
problem. In [4], range-Doppler map is derived from the usage
of a single transmitting antenna, such that the target Doppler
can be extracted and the TDM modulated signal is compen-
sated by the Doppler shift of the moving target. The authors in
[5] and [6] introduce an intra-chirp modulation scheme, where
the antenna elements are switched quite fast and the phase
variations due to TDM is much faster than the phase variations
due to the target motion. Therefore the angular information
decouples from the Doppler information. However, the intra-
chirp TDM requires increased hardware complexity, like faster
switches and a second FMCW modulator [5].
All the aforementioned approaches have been used in linear
TDM, while a nonlinear approach has been introduced in [7].
The authors in [7] have utilized the TDM technique as a
virtual motion of the transmit phase center, called Phase Center
Motion (PCM). The PCM techniques has been introduced as
a joint transmit-receive-time modulated array approach, where
the PCM is independent of the target motion and, therefore,
enables unambiguous multiple target discrimination by using
inter-chirp modulation.
Other approaches of time modulated arrays have been inves-
tigated in works like [8]-[12], where the apparent motion of
the phase center is analyzed within an angle-Doppler plane.
While time modulated or four dimensional arrays are exploit-
ing apparent antenna motion in an attempt to optimize the
radiation pattern sidelobes, the PCM approach in [7] exploits
the time modulation such that a sparse array structure provides
thumbtack response within the angle-Doppler domain, called
angle-Doppler Ambiguity Function (AF). The authors in [8]
and [9] have presented bidirectional and unidirectional PCM,
respectively, in order to suppress the array radiation pattern
sidelobes. A differential evolution algorithm is introduced in
[10], for radiation pattern optimization. Works like [11] have
applied pulse shifting techniques for synthesizing the radiation
pattern. A study on FMCW chirps in time modulated arrays
has been elaborated in [12].
This work builds on the PCM approach of [7] and the key con-
tributions are described below. In contrast to the deterministic
PCM in[7], the current work develops a framework for PCM
trajectories where the phase center position varies randomly
in time. The paper utilizes random PCM trajectories whose
statistical characterization is based on uncorrelated transitions.

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 2285



y

x

dT

dR

τ1

τκ

τK

ADC

ADC

ADC

Data
Cube
Formation

T1

Tn

TN

R1

Rm

RM

r

φ

Tx Switch

ω0
t

Tc

B

ω

isTs

icTc

mdR

q∆φ

p∆D

l∆r

matched filtering
and squaring

Y(is)
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Fig. 1. FMCW System Diagram for white PCM modulation. The matrix Ỹ
denotes the angle-Doppler ambiguity function for a particular range bin.

Such a PCM implies high trajectory fluctuations, which are
different from smooth target trajectories, due to the inertia of
real targets. Therefore, PCM and the target trajectory can be
decoupled due to their independent trajectories. In addition to
the uncorrelated transitions, the PCM is described by the Prob-
ability Density Function (PDF). An interesting aspect is that
the PDF impacts the angle-Doppler determination. A second
contribution of this work lies in the exploitation of the PDF
to enhance target discrimination. Since the PCM trajectory
parameters are known, a trajectory matched filter bank can be
employed in order to extract Doppler and angular information.
A third contribution of the paper is the development of a
matched filter operating on the FMCW samples, chirps and
the number of antennas to provide multiple target information.
Throughout the work, the operator ‖·‖ is used for the l2-norm.
[·]η,γ defines a matrix entry with row index η and column index
γ. The notation [·]η indicates a column vector element with
the index η. The E {·} is the expectation operator. The symbol
C defines the set of complex numbers.

II. SYSTEM MODEL

The underlying system is based on FMCW scheme as
depicted in Figure 1. The local oscillator output is a con-
secutive set of FMCW chirps, where each chirp is radiated
in a random alternating fashion with just one transmit antenna
element being active at a time. The collocated transmit antenna
elements are mounted along the x-axis with an inter-element
spacing of dT and a total number of N antenna elements.
From the sparse transmit array structure the chirp sequence
is propagating towards K multiple, in general moving, point
scatters. The back-scattered signal, which is a superposition
of single target back-scatters, is captured by the dense receive
array. The receive array contains M collocated antenna ele-
ments with an inter-element spacing of dR. Due to the FMCW
scheme, the captured signal at each receiver is down-mixed
by an instantaneous local oscillator signal and subsequently
converted to the digital domain. The accumulated data is
rearranged in a data-cube, where the first dimension contains

the intra-chirp samples, the second dimension denotes the
inter-chirp samples and the third dimension refers to the data
from each receive antenna element. A matched filter is applied
to each dimension in order to compress the continuous wave
such that the range, angle and Doppler information can be
extracted. The matched filter output squaring provides the
range-angle-Doppler AF.

A. Transmitted Signal

The transmitted signal u ∈ CIc×1 consists of Ic FMCW
chirps, while each chirp contains a different phase center
position χ(ic) at the transmit array. The switching across
chirps is denoted by the chirp index ic,

[u]ic (t) = exp (jkφχ(ic)) exp

(
j

(
ω0t+

B

2Tc
t2
))

. (1)

Since the antenna elements are assumed to be point-like
isotropic radiators mounted in x-direction, the propagation
vector for x-direction is denoted as kφ = k0 sin(φ), where
k0 is the free space wave number and j the complex number.
The FMCW parameters are the center angular frequency ω0,
the angular bandwidth B and the chirp duration Tc.

B. Received Signal

The received signal is sampled by the intra-chirps sampling
time is denoted by Ts, while is describes the intra-chirp
sample index. If the signal is reflected by multiple point-like
moving targets, the captured down-mixed and digital converted
received signals are written in matrix notation Y ∈ CIc×M ,

[Y]ic,m (is) =
K∑
κ=1

cκ exp (jkφκdRm) exp (jkφκχ(ic)) (2)

× exp (j (ωDκ(icTc + isTs) + ωBκisTs)) .

The complex constant cκ =

σκ exp
(
j (ω0 + ωDκ) tκ + j B

2Tc
t2κ

)
, which is a result

of the FMCW down-mixing procedure and propagation
effects, contains the κ-th target radar cross section together
with the signal attenuation σκ. The propagation delay
tκ = 2rκ

c0
includes the target range rκ and speed of light

c0. The κ-th target moves continuously during the coherent
processing interval, therefore the Doppler shift ωDκ appears in
the entire sequence considered by the term ωDκ(icTc + isTs).
The sampling time and the corresponding sample index are
denoted by Ts and is, respectively. The FMCW associated
angular beat frequency is defined as ωBκ = 2 BTc

rκ
c0

.

C. Trajectory Matched Filter

After the formation of data-cube, a three dimensional
matched filter is applied with a subsequent squaring. Using
the model (2), the matched filter operation in is and m
directions has the form of a Discrete Fourier Transform
(DFT). The matched filter for the inter-chirp dimension
ic is more involved since it has to extract Doppler and
angular information simultaneously. Further, during this
extraction, the angular information in ic direction has to be
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synchronized with the angular information in m direction.
The synchronization problem is solved by zero padding
in m dimension such that the spatial DFT wave number
resolution is proportional to the inverse virtual array size.
The angular resolution depends on the virtual array size
∆φ = 4π

MNλ [1]. The Doppler resolution is proportional to
the inverse coherent processing interval ∆D = 2π

IcTc [13] and
the range resolution is defined as ∆r = 2π

Tc
. By reformulating

the range resolution expression, the actual limiting factor
for resolution is the angular bandwidth B. The squared
output of the matched filter

[
Ỹ
]
p,q

(l) for the p-th Doppler

bin, q-th angular bin and l-th range bin is
[
Ỹ
]
p,q

(l) =∥∥∥∑m,is,ic
[Y]ic,m (is) exp {−j (l∆risTs + p∆DicTc)}

× exp {−j (q∆φdRm+ q∆φχ(ic))}‖2. Using (2), results in,[
Ỹ
]
p,q

(l) =

∥∥∥∥∥
K∑
κ=1

cκ

M∑
m=1

exp (−j(q∆φ − kφκ)dRm)

×
Is∑
is=1

exp (−j (l∆r − (ωBκ + ωDκ)) isTs) (3)

×
Ic∑
ic=1

exp (−j(q∆φ − kφκ)χ(ic)− j (p∆D − ωDκ) icTc)

∥∥∥∥∥
2

.

Equation (3) illustrates the range migration due to range-
Doppler coupling in the FMCW radar. Further, it can be
shown, if two targets κ1 and κ2 are in different resolution
bins, the cross terms, which are outputs of the squaring, can
be neglected. Therefore the squared matched filter output can
be formulated as a superposition of targets,[

Ỹ
]
p,q

(l) =

K∑
κ=1

σ2
κ ‖frκ(l)‖2 ‖fφκ(q)‖2 (4)

×
∥∥∥∥∥
Ic∑
ic=1

exp
(
−jk′φκ(q)χ(ic)− jω′Dκ(p)icTc

)∥∥∥∥∥
2

.

Conveniently, the range and angular filter response are rede-
fined as frκ(l) =

∑Is
is=1 exp (−j (l∆r − (ωBκ + ωDκ)) isTs)

and fφκ(q) =
∑MN
m=1 exp (−j(q∆φ − kφκ)dRm). Due to the

squaring operation the phase term from FMCW processing
vanishes and only the κ-th target attenuation factor σκ re-
mains. Moreover, for the sake of convenience, the angular and
Doppler coordinates are transferred to k′φκ(q) = q∆φ − kφκ
and ω′Dκ(p) = p∆D − ωDκ respectively.
Equation (4) can be further simplified by assuming χ(ic) to
be a random process. A detailed derivation for a white random
process with arbitrary PDF is demonstrated in Section III.

III. RANDOM PHASE CENTER MOTION

Unlike a deterministic function for PCM as considered
in [7], the PCM χ(ic) is considered as a random pro-
cess. In particular, let ρχ(ic) denote the PDF of χ(ic). One
phase center position is further assumed to be independent
of the other, leading to Dirac-like autocorrelation response

Tx Rx
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2

virtual Array

dT =MdR
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t
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Fig. 2. Random PCM properties with the PCM PDF on left side and the
uncorrelated phase center positions at the right side.

E {χ(ic1)χ(ic2)} = δ(ic1 − ic2). The generic PDF, ρχ(ic),
is assumed to be time independent. These assumptions lead to
a wide sense stationary characterization of χ(ic).

Figure 2 illustrates a snapshot of random PCM. As dis-
cussed in [7], the phase center can assume any real position
within the virtual array by appropriate modulation scheme.
Thus, in general, the PDF ρχ(ic) is continuous; however, the
PDF is discrete for scenarios involving antenna switching.

Since the PCM is a white random process, (4) considers
an estimate of the expected matched filter output or angle-
Doppler AF. Based on this, for further analysis, the average
value of (4) is considered,[

Ỹ
]
p,q

(l) =
K∑
κ=1

σ2
κ ‖frκ(l)‖2 ‖fφκ(q)‖2 (5)

× E


∥∥∥∥∥
Ic∑
ic=1

exp
(
−jk′φκ(q)χ(ic)− jω′Dκ(p)icTc

)∥∥∥∥∥
2
 .

The consideration of the latter term in (5) leads to an expres-
sion of a rectangular windowed periodogram,

fχ(q, p) = E

∥∥∥∥∥
Ic∑
ic=1

exp
(
−jk′φκ(q)χ(ic)− jω′Dκ(p)icTc

)∥∥∥∥∥
2

(6)

=

Ic∑
ic1=1

Ic∑
ic2=1

E
{

exp
(
−jk′φκ(q)(χ(ic1)− χ(ic2))

)}
× exp

(
−jω′Dκ(p)(ic1 − ic2)Tc

)
=

Ic∑
i=−Ic

(
1− |i|Ic

)
r(i) exp

(
−jω′Dκ(p)iTc

)
The autocorrelation function r(i) depends on the relative time
shift i = ic1−ic2. Since the PDF ρχ(ic) of χ(ic) is known, the
autocorrelation function function can be evaluated analytically
as,

r(i) = r(ic1 − ic2) = E
{

exp
(
−jk′φκ(q)(χ(ic1)− χ(ic2)

)}
(7)

= δ(i) + (1− δ(i))
∥∥Γ(k′φκ(q))

∥∥2 .
The function Γ(k′φκ(q)) can be identified as a radiation charac-
teristic for the time modulated array. Furthermore, Γ(k′φκ(q))
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is a function of the PDF ρχ(ic). This can also be seen as the
characteristic function of the PCM evaluated at k′φκ(q),

Γ(k′φκ(q)) = E
{

exp
(
−jk′φκ(q)χ(ic1)

)}
(8)

=

∫ ∞
−∞

ρχ(ic1) exp
(
−jk′φκ(q)χ(ic1)

)
dχ(ic1).

The result matches to array factor investigations [8]-[12],
where the array factor is the Fourier Transform over the
antenna weightings. Therefore, the PDF becomes a design
parameter of the ambiguity function shape in angular direction
and can be exploited for sidelobe suppression.
The periodogram fχ(q, p) can be further evaluated,

fχ(q, p) =
∥∥W (ω′Dκ(p))

∥∥2 ∥∥Γ(k′φκ(q))
∥∥2 (9)

+W (0)(1−
∥∥Γ(k′φκ(q))

∥∥2)

= I2c

(∥∥∥∥W (ω′Dκ(p))

Ic

∥∥∥∥2 ∥∥Γ(k′φκ(q))
∥∥2

+
1

Ic

(
1−

∥∥Γ(k′φκ(q))
∥∥2))

The function W (ω′Dκ(p)) is the DFT of the rectangular time
window and W (0) = Ic denotes the signal energy. In order
to construe the result of (9), the function W (ω′Dκ(p)) is

normalized. Since the first term
∥∥∥W (ω′

Dκ
(p))

Ic

∥∥∥2 ∥∥∥Γ(k′φκ(q))
∥∥∥2

has its maximum at the target position with an amplitude

value of one, the latter term 1
Ic (1 −

∥∥∥Γ(k′φκ(q))
∥∥∥2) has a

lower amplitude. In contrast to [7], the angle-Doppler coupling
becomes a constant side lobe floor, denoted by the latter term
in (9), rather than a Bessel function. Further, the latter term is
a parasitic effect of the chosen random PCM approach. If the
latter term vanishes, the angle-Doppler coupling is not longer
present and therefore for a large number of chirps, the angle-
Doppler coupling is minimal as it is demonstrated through
simulations in Section IV.

IV. SIMULATION RESULTS

The simulation is carried out with N = 4 transmit antennas
and M = 4 receive antennas, mounted in a collocated
manner as depicted in Figure 2, such that the virtual MIMO
array length is maximal. The FMCW chirp duration is set to
Tc = 10 µs, while the carrier frequency is f0 = 77 GHz
and the angular bandwidth B = 20π MHz. If two targets are
present, the targets are at the same range bin in a distance of
r = 10 m. The same distance r = 10 m is set for the single
target simulation.
Figure 3 illustrates the sinus cardinal like characteristic of the

main lobe and its sidelobes. This sinus cardinal characteristic
arises from the uniform PDF, therefore the resolution is
maximal, while the sidelobes are high. As a consequence, if
the PDF is replaced by a Gaussian distribution, the resolution
decreases and the sidelobes are suppressed, as it is illustrated
in Figure 4. The uniform and Gaussian PDF are depicted in
Figure 8 and Figure 9, respectively. Both PDF’s are discrete,
which illustrates the switching of the transmit array.

Fig. 3. Angle-Doppler AF for single target with SNR = 10 dB, Ic = 512
and uniform PDF

Fig. 4. Angle-Doppler AF for single target with SNR = 10 dB, Ic = 512
and Gaussian PDF.

Fig. 5. Angle-Doppler AF for single target with SNR = 10 dB, Ic = 128
and rectangular PDF.

Another degree of freedom by the proposed method is the
choice of number of chirps, as it increases the sidelobe floor
of the AF. The AF in Figure 5 has a higher sidelobe floor in
comparison to the AF in Figure 3. As a result, as the number
of chirps is increased, the influence of sidelobe floor on target
detection decreases, because the sidelobes perturb the target
detection much more than the sidelobe floor. Therefore, for a
high number of chirps, the AF in Figure 3 performs similar in
terms of sidelobes and resolution compared to the filled array
case. This is clearly shown in Figure 6, where the performance
of the proposed scheme is similar to that of filled array with
16 elements (having the same resolution as the considered
virtual MIMO array, but with only 8 elements in total). For
the filled array, beamforming is undertaken at the receiver.
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Fig. 6. Angle-Doppler AF for single target with SNR = 10 dB and
Ic = 512 using one transmitter and 16 receiver by applying conventional
beamforming.

Fig. 7. Angle-Doppler AF for two target with SNR = −20 dB, Ic = 512
and uniform PDF.

Fig. 8. Uniform discrete PDF for Ic = 512 chirps.

Fig. 9. Gaussian discrete PDF for Ic = 512 chirps.

Figure 7 illustrates the method for a low Signal to Noise Ratio
(SNR) in a multiple target scenario. The proposed matched
filter approach enhances the detection performance for close
proximity targets.

V. CONCLUSION

This work proposes a novel technique for enhanced low
cost target detection with the objective of suppressing the
angle-Doppler coupling. It considers PCM based on random
spatio-temporal modulations of the transmit array followed
by a matched filter processing at receiver. The ease of im-
plementation, by just using a switched transmit array and a
conventional beamforming technique at the receiver, makes the
proposed approach attractive. Simulation results have proven
the capability of the proposed method by illustrating the
desired shaping of the AF based on the choice of the PDF
of PCM. This provides for an additional degree of freedom in
designing radar systems for target discrimination.
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