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ABSTRACT

Sampling from multi-dimensional and complex distributions
is still a challenging issue for the signal processing commu-
nity. In this research area, Hamiltonian Monte Carlo (HMC)
schemes have been proposed several years ago, using the tar-
get distribution geometry to perform efficient sampling. More
recently, a non-smooth HMC (ns-HMC) scheme has been pro-
posed to generalize HMC for distributions having non-smooth
energy functions. This new scheme relies on the use of a prox-
imity operator, which cannot be explicitly calculated for a
large class of energy functions. We propose in this paper a
fast and more general ns-HMC scheme that can be applied
to any energy function by using a Bayesian calculation of the
proximity operator, which makes the proposed scheme appli-
cable to any energy function. Moreover, the proposed scheme
relies on an interesting property of the proximity operator
avoiding heavy calculations at each sampling step. The pro-
posed scheme is tested on different sampling examples involv-
ing `p and total variation energy functions.

Index Terms— MCMC, HMC, ns-HMC, proximity op-
erator

1. INTRODUCTION

Sparse signal recovery is still a hot research topic espe-
cially when the signals and images of interest are of large
dimensions. This is the case with several recent applications
considered in remote sensing [1] or medical imaging [2].
To solve ill-posed inverse problems, Bayesian techniques
have demonstrated their ability to provide accurate estima-
tions by automatically estimating all the model parameters
and hyperparameters from the data. These techniques gener-
ally rely on a maximum a posteriori (MAP) estimation built
upon the signal/image likelihood and priors. The inherent
hierarchical Bayesian models generally involve sparse priors
either in the original domain or in a transform space (such
as the wavelet domain [3]). Using these priors can make
the analytic derivation of Bayesian estimators difficult. Nu-
merical approximations of the MAP estimators can therefore
be built, using samples generated according to the poste-
rior of interest using Markov chain Monte Carlo (MCMC)
sampling techniques [4]. When the problem dimensions are

large, the sampling task becomes difficult due to the poor
performance of standard algorithms such as the Metropolis-
Hastings (MH) [5] or the random walk MH algorithms [4]. To
address this problem, several efficient sampling algorithms
have been proposed such as elliptical slice sampling [6] or the
Metropolis-adjusted Langevin algorithm (MALA) [7, 8]. In
the same direction, sampling using Hamiltonian dynamics has
also been investigated in [9, 10] resulting in the Hamiltonian
Monte Carlo (HMC) algorithm. However, HMC schemes
cannot be used in the case of exponential target distribution
with non-differentiable energy function. To alleviate this
problem, a non-smooth HMC (ns-HMC) sampling scheme
has been recently proposed to make sampling using Hamil-
tonian dynamics possible for any exponential distribution
[11]. This has been made possible by using the concepts
of sub-differential and proximity operators [12], allowing
the leapfrog discretization scheme to be generalized using a
proximity operator calculation step.
However, analytic calculation of the proximity operator for a
wide class of energy functions is not possible. This is the case
of the `p norm function for general values of p (except for
some values such as 1, 1.5, 2, 3 and 4). This drawback pre-
vents the use of the ns-HMC algorithm in the case of sparse
target distributions whose proximity operator of the energy
function cannot be computed.
In this paper, our contribution is twofold. We first propose a
modified ns-HMC scheme, which can be used for any energy
function even when the proximity operator cannot be explic-
itly calculated. The proposed scheme relies on a Bayesian
calculation of the proximity operator. The second contri-
bution relies on the shift property of the proximity operator
allowing costly calculations inside every sampling step to be
avoided. The proximity operator is hence calculated only
once at the initialization step, and then deduced at different
points from the initially calculated value.
The rest of this paper is organized as follows. The addressed
problem is formulated in Section 2. The proposed efficient
ns-HMC scheme is developed in Section 3 and validated in
Section 4. Finally, some conclusions and perspectives are
drawn in Section 5.
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2. PROBLEM FORMULATION

Akin to [11], we consider a signal of interest x ∈ RN hav-
ing the probability density function (pdf) f(x;θ) belonging
to the exponential family parametrized by a vector of hyper-
parameter θ

f(x;θ) ∝ exp (−Eθ(x)) , (1)

where Eθ is the energy function. In the following, we are
interested in generating samples according to f for a known
hyperparameter vector θ.

2.1. Hamiltonian Monte Carlo

Hamiltonian dynamics are originally used in the classical me-
chanics theory in order to model the total energy of a mov-
ing particle. For multidimensional efficient sampling, HMC
[9, 10] techniques proceed by introducing an auxiliary vari-
able q and a function K to simulate the potential energy vari-
ation, Eθ assumed to model the kinetic energy of a moving
particle. The Hamiltonian H can be expressed as

H(x, q) = E(x) +K(q). (2)

The motion equations of this operator determine the temporal
evolution of the position x(t)

dq

dt
=
∂H

∂x
;
dx

dt
= −∂H

∂q
. (3)

The Hamiltonian in (2) can equivalently be expressed by the
following pdf

fθ(x, q) ∝ exp (−H(x, q))

∝ f(x;θ) exp (−K(q)) . (4)

HMC sampling is performed by sequentially updating x and
q by sampling according to appropriate probability distri-
butions. More precisely, this sampling is performed in two
steps. The first one consists of sampling q according to the
multivariate Gaussian distributionN (0, IN ), where IN is the
N × N identity matrix. The second step aims at proposing
candidates x∗ and q∗ by simulating the Hamiltonian dynam-
ics which can be discretized using the leapfrog discretization
scheme [9, 10].

2.2. Non-smooth Hamiltonian Monte Carlo

As an extension of the HMC scheme, ns-HMC has been pro-
posed in [11] to make possible the use of Hamiltonian dynam-
ics for efficient sampling even for target distributions with
non-smooth energy functions. For instance, ns-HMC can be
used efficiently to sample a generalized Gaussian (GG) distri-
bution with pdf

∀x ∈ RN ,GG(x|λ, p) =
p

2λΓ(1/p)
exp (−Eθ(x)) (5)

whereEθ(x) =
‖x‖pp
λp and θ = {λ, p}, ‖.‖pp being the `p norm.

The ns-HMC scheme modifies the leapfrog discretization
scheme by introducing a step calculating the proximity oper-
ator ofEθ. In the general case, the ns-HMC sampling scheme
is given by algorithm 1, where Lf and ε denote the number
of leapfrog steps and the stepsize, respectively [11].

Algorithm 1: ns-HMC algorithm [11].

- Initialize with some x(0,0), set the iteration number
r = 0, Lf and ε;
for r = 1, . . . , S do

- Sample q(r,0) ∼ N (0, IN );
- Compute q(r, 12 ε) =
q(r,0) − ε

2

[
x(r−1,0) − proxEθ

(x(r−1,0))
]
;

- Compute x(r,ε) = x(r−1,0) + εq(r, 12 ε);
for lf = 1 to Lf − 1 do

* Compute q(r,(lf+ 1
2 )ε) =

q(r,lf ε) − ε
2

[
x(r,lf ε) − proxEθ

(x(r,lf ε))
]
;

* Compute
x(r,(lf+1)ε) = x(r,lf ε) + εq(r,(lf+ 1

2 )ε);
end
- Compute q(r,(Lf+ 1

2 )ε) =
q(r,Lf ε) − ε

2

[
x(r,Lf ε) − proxEθ

(x(r,Lf ε))
]
;

- Apply standard MH acceptation rule by taking
q∗ = q(r,εLf ) and x∗ = x(r,εLf );

end

However, calculating proxEθ
is not always straightfor-

ward. For instance, the proximity operator of the `p norm
can only be explicitly calculated for few values of p (such as
1, 1.5, 2, 3 and 4) [13]. For other values of p, an iterative cal-
culation is the only way to approximate the proximity opera-
tor, which is not always easy to perform [13]. Consequently,
using the ns-HMC scheme is not always possible. The fol-
lowing section introduces a new sampling technique resulting
in a fast and more general ns-HMC scheme.

3. GENERAL ns-HMC

3.1. Bayesian proximity operator calculation

We first recall the definition of the proximity operator as
stated in [12].

Definition 3.1 Let Φ ∈ Γ0(R). For every x ∈ R, the function
Φ +‖ ·−x‖2/2 reaches its infimum at a unique point referred
to as proximity operator and denoted by proxΦ(x).

In order to calculate the proximity operator of a function Φ,
some analytic tools are available in the literature [13, 14]. It
is worth noticing that this calculation does not lead to closed-
form expressions of the proximity operator for a wide panel of
functions. However, iterative calculation is possible in many
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cases by numerically approximating the proximity operator.
Alternatively, we propose in what follows a Bayesian tech-
nique calculating the proximity operator that can be applied
to any convex function Φ.
Following Definition 3.1 for the multidimensional case, and
when the infimum is reached, we can write

proxΦ(x) = arg min
y∈R

[
Φ(y) +

1

2
‖y − x‖2

]
. (6)

This optimization problem can be reformulated as find-
ing the maximum of the following exponential function

exp

(
−Φ(x)− ‖y − x‖

2

2

)
, which can be seen as a pos-

terior distribution of the random variable X conditionally to
the observed random variable Y

f(x | y) ∝ exp

(
−Φ(x)− ‖y − x‖

2

2

)
(7)

where the prior on x can be expressed as

f(x) ∝ exp (−Φ(x)) (8)

and the likelihood as

f(y | x) ∝ exp

(
‖y − x‖2

2

)
. (9)

Under this construction, it is easy to show that calculating
the proximity operator is equivalent to solving a denoising
problem under the assumption of an additive Gaussian noise
having a covariance matrix equal to the identity matrix. Max-
imizing the posterior in (7) can therefore be performed by cal-
culating the MAP estimator x̂ that corresponds exactly to the
proximity operator calculation as defined in Definition 3.1.
An MH algorithm can be used to sample according to the pos-
terior distribution in (7) using an appropriate proposal distri-
bution κ sharing the same support as Φ. The MAP estimator
x̂ = proxΦ(x) can then be approximated using the sampled
chain {x(r)}r=1,... after withdrawing samples corresponding
to the burn-in period.

3.2. The proposed general ns-HMC scheme

Each iteration of the ns-HMC scheme in Algorithm 1 involves
Lf + 1 calculations of proxEθ

(x) at different points. When
no closed-form expression can be obtained for the proximity
operator, the ns-HMC scheme becomes useless. In this paper,
we propose a fast ns-HMC scheme based on a Bayesian cal-
culation of proxEθ

(x(0,0)) for any energy function Eθ. More
precisely, this calculation is performed at the initialization
point x(0,0). All other evaluations of the proximity opera-
tor are then performed using proxEθ

(x(0,0)). This is possible
thanks to the following proximity operator property [13].

Property 3.1 Let Ψ = Φ(. − z) where z ∈ R. Then
proxΨ(x) = z + proxΦ(x), ∀x ∈ R.

Algorithm 2: MH sampler for proximity operator cal-
culation.

- Initialize with some x(0) and set r = 0;
while not convergence do

À Propose a candidate x∗ ∼ κ(. | x(r));
Á Calculate the acceptation ratio r =

κ(x∗ | x(r)) exp

(
−Φ(x∗)− ‖y − x

∗‖2

2

)
κ(x(r) | x∗) exp

(
−Φ(x(r))− ‖y − x

(r)‖2

2

) ;

Â Calculate the acceptation probability
α = min{r, 1};
Ã Accept the proposed candidate with the
probability α;
Ä Set r ← r + 1 ;

end

Using this property, and based on an initial calculation of the
proximity operator at a point x0, calculating the proximity
operator at a candidate point x∗ can be performed by decom-
posing x∗ = x0− (x0−x∗) and using the following relation

proxΦ(x∗) = x0 − x∗ + proxΦ(x0). (10)

The resulting general ns-HMC sampling scheme is detailed in
Algorithm 3.

Algorithm 3: Proposed general ns-HMC algorithm.

- Initialize with some x(0,0), set the iteration number
r = 0, Lf and ε;
- Compute P0 = proxEθ

(x(0,0)) using Algorithm 2;
for r = 1, . . . , S do

- Sample q(r,0) ∼ N (0, IN );
- Compute
q(r, 12 ε) = q(r,0) − ε

2

[
2x(r−1,0) − x(0,0) − P0)

]
;

- Compute x(r,ε) = x(r−1,0) + εq(r, 12 ε);
for lf = 1 to Lf − 1 do

* Compute q(r,(lf+ 1
2 )ε) =

q(r,lf ε) − ε
2

[
2x(r,lf ε) − x(0,0) − P0

]
;

* Compute
x(r,(lf+1)ε) = x(r,lf ε) + εq(r,(lf+ 1

2 )ε);
end
- Compute q(r,(Lf+ 1

2 )ε) =
q(r,Lf ε) − ε

2

[
2x(r,Lf ε) − x(0,0) − P0

]
;

- Apply standard MH acceptation rule to (x∗, q∗)
with q∗ = q(r,εLf ) and x∗ = x(r,εLf );

end

It is worth noticing that the Bayesian calculation of the
proximity operator could be calculated at each step but with
an increased computational cost with respect to the proposed
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solution. Indeed, in the proposed scheme, the Bayesian cal-
culation of the proximity operator is only calculated at the
initialization step. The calculated value is then used to update
the proximity operator value at different points. Another in-
teresting property of the proposed scheme is that it does not
depend on the initial point where the proximity operator is
calculated first.

4. EXPERIMENTAL VALIDATION

In this section, we validate the proposed fast ns-HMC scheme
on two main experiments. The first experiment aims at eval-
uating the sampling performance for a GG distribution. The
second experiment illustrates the sampling performance on a
particular target distribution involving a total variation (TV)
term [15] for which the proximity operator cannot be calcu-
lated.

4.1. Experiment 1: `p sampling

In this section, we investigate the sampling of a GG distribu-
tion whose pdf is (5). In this experiment, sampling according
to a GG distribution is addressed. For the scalar case, Fig.
1 displays the histogram of the sampled chains (after con-
vergence) using standard ns-HMC and the proposed scheme
for p = 1.5, a value for which the proximity operator has
a closed-form expression (the scale parameter was fixed to
λ = 1). This figure shows that in this case the two methods
perform similarly. As regards computational time, the two
methods run in approximately 7.5 seconds for 104 iterations.

ns-HMC Proposed scheme

Fig. 1. Histograms of sampled chains using ns-HMC and fast ns-HMC for
a univariate GG distribution with p = 1.5 and λ = 1.

The autocorrelations of the samples generated by the ns-
HMC and fast ns-HMC are displayed in Fig. 2, showing that
the the two methods generate samples with very similar cor-
relation properties.

In a second scenario, we consider p = 1.2 and λ = 1.
Fig. 3 shows the histogram of the sampled coefficients using
the proposed scheme and a random walk MH algorithm (rw-
MH). This figure shows that the proposed method provides
accurate sampling since the histogram of the sampled chain is
close to the one obtained by rw-MH. It is worth noticing that
since the proximity operator cannot be explicitly calculated
for this value of the shape parameter p, the standard ns-HMC
scheme cannot be run in this case.

Fig. 2. ACFs of the sampled chains using MH, rw-MH and fast ns-HMC,
for a 1d GG distribution with p = 1.2 and λ = 1.

rw-MH Proposed scheme

Fig. 3. Histograms of sampled chains using ns-HMC and fast ns-HMC for
a univariate GG distribution with p = 1.2 and λ = 1.

As regards autocorrelation levels, Fig. 4 displays the ACF
curves corresponding to the sampled chains using MH, rw-
MH and the proposed scheme. These curves clearly show the
low autocorrelation level obtained by our method, which is
close to the one obtained by the standard MH algorithm.

Fig. 4. ACFs of the sampled chains using MH, rw-MH and fast ns-HMC,
for a univariate GG distribution with p = 1.2 and λ = 1.

In the next Section, a more challenging sampling example
is proposed to better asses the performance of the proposed
scheme on distributions whose proximity operator of the en-
ergy function cannot be explicitly calculated.

4.2. Experiment 2: TV sampling

This experiment illustrates the performance of the proposed
scheme on sampling from an exponential distribution involv-
ing a TV term

f(x | α, λ) ∝ exp (−Eα,λ(x)) (11)
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where Eα,λ(x) = α‖x‖22 + λ‖∇x‖1, α ∈ R+, λ ∈ R+

and ∇x is the gradient of x ∈ R2. This distribution is fre-
quently encountered in image restoration problems involving
TV regularization terms [16]. For this example, the proximity
operator of Eα,λ cannot be explicitly calculated. Note also
that even iterative calculations are difficult to conduct for this
case unless splitting the TV term, which results in more com-
plex resolution algorithms.
Fig. 5 displays the 2D histograms of the sampled chains us-
ing rw-MH and the proposed scheme, in addition to the target
pdf. This figure shows that the target distribution is well ap-
proximated around the origin. This approximation is less pre-
cise for high values, and this with both methods. In order to

rw-MH Proposed scheme pdf

Fig. 5. 2D histograms of sampled chains using rw-MH and the proposed
scheme (α = λ = 1).

asses the convergence speed of the proposed scheme, Fig. 6
illustrates the Kullback-Leibler (KL) divergence between the
target pdf and the histograms of the generated chains coef-
ficients for the bivariate pdf (11). Note that the curves have
been obtained by averaging the outputs of 50 Monte Carlo
runs.

Fig. 6. Mean KL divergence (versus iteration number) between the tar-
get pdf and the histogram of the generated samples using rw-MH and the
proposed scheme (α = λ = 1).

This figure clearly shows the high acceleration rate ob-
tained with the proposed technique w.r.t. rw-MH algorithm.
This acceleration is coherent with the rates observed with the
standard ns-HMC scheme [11].

5. CONCLUSION

This paper proposed a modified ns-HMC sampling scheme
involving a Bayesian calculation of the proximity operator.

This extension makes the ns-HMC algorithm applicable to
more general distributions, in particular to the distributions
for which the proximal operator cannot be computed analyt-
ically. An advantage of the proposed scheme is that it only
requires an initial calculation of the proximity operator. The
shift property is then used to deduce the proximity operator
at any other point during the sampling steps. Sampling ex-
periments demonstrated the efficiency of the proposed tech-
nique to perform fast and accurate sampling according to two
specific target distributions. Future work will consider the
application of the proposed scheme to large data restoration
problems.
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