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Abstract—Point Process Models (PPM) have been widely used
for keyword spotting applications. Training these models typically
requires a considerable number of keyword examples. In this
work, we consider a scenario where very few keyword examples
are available for training. The availability of a limited number of
training examples results in a PPM with poorly learnt parame-
ters. We propose an unsupervised online learning algorithm that
starts from a poor PPM model and updates the PPM parameters
using newly detected samples of the keyword in a corpus under
consideration and uses the updated model for further keyword
detection. We test our algorithm on eight keywords taken from
the TIMIT database, the training set of which, on average, has
469 samples of each keyword. With an initial set of only five
samples of a keyword (corresponds to ∼ 1% of the total number
of samples) followed by the proposed online parameter updating
throughout the entire TIMIT train set, the performance on the
TIMIT test set using the final model is found to be comparable
to that of a PPM trained with all the samples of the respective
keyword available from the entire TIMIT train set.

I. INTRODUCTION

Keyword Spotting (KWS) using Point Process Models

(PPM) performs poorly when trained with limited number

of training samples [1]. This degradation is detrimental for

a situation where not many training samples for the keyword

are available, but a good keyword spotting performance is in

demand. An example scenario can be the one where lots of

intercepted voice communications from a secretive group need

to be searched for keywords with very few voice examples.

Another application would be to detect keywords in languages

with limited linguistic resources, because typical automatic

speech recognition (ASR) systems do not support more than

50-100 languages [2]. The idea behind the present work is

to initiate a PPM with few available keyword samples and

then use carefully chosen newly detected samples using this

initial PPM to update the PPM model parameters. Hence, the

proposed approach is, in principle, unsupervised in nature and

works with a small set of annotated keywords. While there are

several unsupervised approaches to KWS [3][2], to the best of

our knowledge, there is no work that incorporates an online

model updating scheme to enhance the performance over

the course of an online learning corpus. KWS experiments

with eight keywords from the TIMIT corpus show that a

PPM, initialized with only five samples and updated using

the proposed online learning algorithm performs as good as a

PPM trained with all annotated samples in the online learning

corpus (approximately 469 samples, on average, per keyword).

We begin with a brief description of PPM for KWS.

II. POINT PROCESS MODELS FOR KEYWORD SPOTTING

PPM for KWS was introduced [1] as a landmark based

approach. The algorithms works by detecting phonetic events

in the posteriorgram obtained from a Deep Neural Network

(DNN), which is trained to map the feature space F to a

probability distribution over a set P = {1, 2, . . . N} where

each element corresponds to a phoneme among a set of N

phonemes. A phonetic event for a phoneme p ∈ P is obtained

in a frame where the value of the posteriorgram trajectory

(probability of occurrence of that phoneme as a function of

time) for that phoneme exceeds a threshold δ. For a given time

interval [tα, tβ ] of duration T = tβ − tα, suppose there are np

phonetic events for phoneme p ∈ P at locations tα ≤ t
p
1 <

t
p
2 < ... < tpnp

≤ tβ . Then, a complete observation over the

duration T is denoted by

OT = {Np|p ∈ P} (1)

where Np = {tp1, t
p
2, . . . t

p
np
}.

For a given keyword w, consider a set of K observations

denoted by O
(w)
M = {OT (1) , OT (2) . . . OT (M)}, where Tw =

{T (1), T (2), . . . T (M)} denotes the set of the respective word

durations. The observations of phonetic events can be modeled

by a point process with piece-wise constant rate parameters

[1]. The parameter set θw for the model corresponding to key-

word w is obtained by maximum likelihood (ML) estimation.

The likelihood function of the observations O
(w)
M is obtained

as

P (O
(w)
M |Tw, θw) =

M
∏

m=1

P (OT (m) |T (m), θw) (2)

=
M
∏

m=1

D
∏

d=1

∏

p∈P

(λp,d)
n
(m)
p,d exp

(

−λp,dT
(m)

D

)

where, λp,d is the piece-wise constant approximated rate

parameter for phoneme p in dth segment among D constant

duration segments and n
(m)
p,d are the respective counts of the

phonetic events in the mth sample of the keyword. Thus,
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θw = {λp,d|p ∈ P, 1 ≤ d ≤ D}. The PPM formulation

also requires a background model characterizing the rate of

occurrences of each phoneme p ∈ P outside the locations of

the keywords. Let θbg be the parameter set for the background

model. Then likelihood of an observation OT given the back-

ground model θbg = {µ1, µ2, . . . µN}, is given by

P (OT |T, θbg) =
∏

p∈P

(µp)
(np) exp(−µpT ) (3)

where np is the number of occurrences of events of phoneme

p ∈ P in the interval T and µp is the respective rate parameter.

The detection function is given by

dw(t) = log

[
∫ ∞

0

P (OT (t)|T, θw)P (T |θw)

T |OT (t)|P (OT (t)|T, θbg)
dT

]

(4)

where OT (t) is the observation set as defined in equation (1)

over [t − T, t] and P (T |θw) = P (T |w) is obtained from the

word duration model β(T |w). We model the random variable

T by a Gaussian distribution. Thus β(T |w) = N (T |µw, σ
2
w),

where µw and σw are estimated by ML criterion for a given

w. A keyword w is declared to have occurred if dw(t) crosses

a threshold value γ. There have been a few improvements on

the basic PPM algorithm including faster decoding techniques

[4] and better event selection [5], use of context-dependent

phonemes [6], text-to-speech inspired duration modeling [7]

and spoken term detection (STD) using PPM [8]. However, in

this work, we use the original PPM algorithm as described by

Jansen et al. [1].

III. UNSUPERVISED ONLINE LEARNING IN PPM BASED

KWS

The steps of the proposed unsupervised online learning

algorithm are illustrated in Fig. 1. At the beginning of the

algorithm, we initialize a PPM with parameters θ
(Kstart)
w learnt

from Kstart training samples of a keyword as described in

section III-A and an initial estimate of keyword detection

threshold γ(Kstart). At any point of the online learning, we

use the current model to determine the detector plot dw(t)
on the speech from an online learning corpus as described

in the section II (indicated by [A] in Fig. 1). Given the

speech, the proposed algorithm detects new occurrences of the

keyword using a procedure outlined in section III-B (indicated

by [B] in Fig. 1). Once the kth (k > Kstart) sample of the

keyword is detected, we update the threshold value to γ(k) as

described in section III-C and the learning factor to α(k) as

described in section III-D (indicated by [C] and [D] in Fig. 1

respectively). The PPM model is updated using the new value

α(k) (indicated by [E] in Fig. 1). If no keyword is detected

in the given speech, the PPM does not undergo any update.

A. Initial Model

We assume a scenario where not many annotated training

samples of the keyword are available. Suppose only Kstart

training samples of the keyword are available to begin with

and we train a PPM and a word duration model with these

Kstart samples following the steps outlined in section II. The

Fig. 1: Block diagram summarizing the online learning steps

for updating the PPM.

parameters from the resulting model are used as the initial

estimate for the proposed online learning algorithm. However,

the word duration model is not updated and remains fixed

throughout the learning process.

B. New location and duration hypotheses

Given the speech from the online learning corpus, we

obtain the detector plot dw(t) using equation (4). We estimate

the location and duration of a new keyword sample by the

following steps:

1) Location t(k) of the kth keyword: Let γ(k − 1) be the

threshold after (k− 1) keywords have been detected. Suppose

the kth sample is detected in the region [τ
(k)
1 , τ

(k)
2 ] where

dw(τ
(k)
1 + ǫ) > γ(k − 1) and dw(τ

(k)
1 − ǫ) < γ(k − 1) for a

small value ǫ > 0 and τ
(k)
2 is the first time instant after τ

(k)
1

where dw(τ
(k)
2 + ǫ) < γ(k − 1) and dw(τ

(k)
2 − ǫ) > γ(k − 1)

for a small value ǫ > 0. The end location of the kth keyword

is hypothesized to occur at

t(k) = arg max
τ
(k)
1 <t<τ

(k)
2

dw(t). (5)

We also define

βk = max
τ
(k)
1 <t<τ

(k)
2

dw(t). (6)
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2) Duration T (k) of the kth keyword occurring at time

t(k): From the word duration model β(T |w), we consider four

potential durations of the keyword and the duration of the kth

newly detected sample is estimated using equation (7).

T (k) = arg max
n∈{−1,0,1,2}

P
(

Oµw+nσw
(t(k))

∣

∣

∣
µw + nσw, θ

(k−1)
w

)

× β(µw + nσw|w)
(7)

C. Updating γ(k) after detection of the kth sample of a

keyword

A low γ(k) value can potentially give rise to a lot of false

alarms, which may, in turn, result in a poor PPM. On the

other hand, a very high value of γ(k) may result in true

rejections leading to a poor model too. In our algorithm, after

determining k keyword locations and durations, we derive the

set
M (k)(w) = {β

k̂
|1 ≤ k̂ ≤ k} (8)

We propose that the value of γ(k) after detecting the kth

sample of a keyword be assigned to

γ(k) =

{

0.1×median(M (k)(w)) for k = Kstart

0.5×median(M (k)(w)) for k > Kstart

(9)

The set M (Kstart)(w) consists of the values of βk correspond-

ing to the initial Kstart samples. We take 10% of the median

value at the beginning of the algorithm to encourage accurate

detection of keywords as the initial model might not be rich

enough to give a high response at new keyword locations. The

purpose of choosing the median instead of mean is to avoid

γ(k) to be influenced by outlier values in M (k)(w) due to

false alarms.

D. Model updating

Once the kth sample of w is detected at location t(k) with

duration T (k), we update the parameter set θw by the following

operations.

1) Calculate rate parameter set θ̂w for the new example:

Consider the current set of rate-parameters at the end of

detecting k − 1 samples of keyword w

θ(k−1)
w =

{

λ
(k−1)
p,d

∣

∣

∣
p ∈ P, 1 ≤ d ≤ D

}

(10)

A new set of piece-wise constant rate-parameters is obtained

for the newly detected keyword by maximizing the likelihood

function as

θ̂w = argmax
θw

P
(

OT (k)(t(k))|T (k), θw

)

(11)

The solution to the above optimization problem is obtained as

θ̂w =

{

λ̂p,d =
np,dD

T (k)

∣

∣

∣

∣

p ∈ P, 1 ≤ d ≤ D}

}

(12)

where, np,d is the number of phonetic events for the pth

phoneme in the dth segment of the newly detected keyword.

2) Obtaining the updated parameter set θ
(k)
w : The updated

set of rate parameters is obtained by a convex combination of

the elements from the above two sets using a learning factor

α(k).

θ(k)w = {λ
(k)
p,d =(α(k))λ

(k−1)
p,d + (1− α(k))λ̂p,d

| p ∈ P, 1 ≤ d ≤ D}
(13)

The choice of a proper value of α(k) is essential for arriving

at a good set of model parameters after the algorithm runs over

the entire online learning corpus. We choose the value of α(k)
to be

α(k) =

∑k−1

k̂=1
T (k̂)

∑k

k̂=1 T
(k̂)

. (14)

It is easy to show (see Appendix A) that with this choice

of α(k), θ
(k)
w becomes the ML solution of the parameters by

using all the detected k samples.

IV. EXPERIMENTS AND RESULTS

To evaluate our proposed algorithm, we use eight keywords

obtained from the TIMIT [9] SA1 and SA2 sentences, namely

greasy, water, dark, wash, carry, oily, suit, year. We

use the TIMIT training set consisting of 4620 sentences for

training as well as the online learning corpus for learning

the model parameters for each of these eight keywords us-

ing the proposed algorithm. The number of keywords in

the TIMIT train and test as a pair are (462,74), (479,75),

(473,75), (469,74), (463,75), (470,74), (462,74), (473,79) for

eight keywords respectively. Out of these 4620 sentences, five

sentences containing a keyword are used to train the initial

model PPMinit. The remaining 4615 sentences are used as

the online learning corpus for updating the model using the

proposed online learning approach denoted by PPMonline(ζ)
where ζ ∈ {1, 2, . . . 4615} denotes the index of sentences

seen by the algorithm. Hence, PPMonline(ζ) is the new

model updated from the previous model PPMonline(ζ−1) by

incorporating the keywords detected in the ζth sentence. Sim-

ilarly, we also train a PPM PPMall(ζ), ζ ∈ {1, 2, . . . 4615},

using the original keyword locations provided in the word

transcriptions upto ζth sentence available in the TIMIT corpus.

We use PPMF
online and PPMF

all to denote the final mod-

els PPMonline(4615) and PPMall(4615) respectively. The

DNN used to generate the posteriorgrams in our experiments

is obtained from the Kaldi [10] TIMIT recipe . The features

used as input to the DNN are 40 dimensional feature-space

maximum likelihood linear regression (fMLLR) features [11]

with a context of five frames on either side.

The performance of the algorithm is quantified by the per-

centage area under the Receivers Operating Curves (ROC) ob-

tained by running the models PPMonline(ζ) and PPMall(ζ)
for ζ ∈ {1, 2, . . . , 4615} on the TIMIT test set consisting

of 740 sentences. These 740 sentences comprise of all the

sentences of 24 speakers from TIMIT core test set (24x10=240

sentences) as well as all sentences of 50 speakers from the

development set used by the Kaldi TIMIT recipe (50x10=500

sentences). If the area under the ROC is A upto a false alarm
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rate of f , then the percentage area under the ROC curve is

given by PAROC = 100×A
f
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Fig. 2: Variation of PAROC on TIMIT test set as a function

of number of observed sentences in the online learning corpus

for the four keywords dark, suit, greasy and wash
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Fig. 3: Variation of PAROC on TIMIT test set as a function

of number of observed sentences in the online learning corpus

for the four keywords water, carry, oily and year

The purpose of doing this normalization is to get rid of

variations of area under the ROC because of differences in

the support of the ROC curves. Another performance measure

typically used to evaluate KWS performance is the Figure of

Merit (FOM) [12] score, which is the mean of a modified

ROC curve sampled at ten points. We have found PAROC

to be better than FOM in capturing gradual improvements of

the model because FOM takes the value of the ROC curve at

certain number of points and does not quantify the overall

change (improvement or deterioration) of the curve. Since

each of the models PPMonline(ζ) where ζ ∈ {1, 2, . . . 4615},

does not change significantly from the previous model, the

FOM measure fails to capture the fine change in performance.

Hence, we rely on the measure PAROC to assess the per-

formance of the proposed algorithm. Figs. 2 and 3 show

the variation of PAROC for the models PPMonline(ζ) and

PPMall(ζ) for ζ ∈ {1, 2, . . . 4615}. It is clear from these

figures that the PAROC from PPMonline gets closer to that

from PPMall as the ζ increases.
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Fig. 4: Number of actual, detected keywords and false alarms

by online PPM for dark, suit, greasy and wash on the online

learning corpus
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Fig. 5: Number of actual, detected keywords and false alarms

by online PPM for water, carry, oily and year on the online

learning corpus

On the other hand, Figs. 4 and 5 show a comparison of

the actual number of keywords present in the online learning

corpus as well as the number of correctly detected keywords

and the number of false alarms as a function of ζ. It can

be observed that the number of correctly detected keywords

as well as the false alarms vary depending on the keyword.

This, in turn, determines the quality of the updated PPM. It

also suggests that as the number of correctly detected keyword

increases, the updated PPMonline matches closely with the

actual PPM although the online update includes several false

alarms.

Table I provides a comparison of the performance of the

final model in terms of FOM score. It can be seen that the

average FOM scores for the models PPMF
online and PPMF

all

on the TIMIT test are comparable and are 3.9% and 4%

better respectively than the FOM score of the initial model

PPMinit on the TIMIT test set. On the other hand, the

improvements in PAROC are 36% and 38% for PPMF
online

and PPMF
all respectively over the initial model PPMinit

which also indicates that the performance of PPMF
online

and PPMF
all are similar. This shows that starting with five
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Keyword PPMinit PPM
F

online
PPM

F

all

dark 94.67 96.93 96.80

suit 89.59 96.23 95.27

greasy 94.59 97.03 97.03

wash 95.81 96.76 97.03

water 96.80 96.67 96.93

carry 92.40 96.93 96.67

oily 85.54 96.49 96.08

year 91.39 92.66 95.06

Average 92.60 96.19 96.36

TABLE I: Comparison of FOM values on TIMIT test set using

PPMinit, PPMF
online and PPMF

all

examples, the proposed online learning algorithm has updated

the parameter set such that it results in a performance similar

to that of the parameters obtained from original PPM algorithm

[1] which is trained on all the available annotated keywords

from the entire TIMIT train database. Hence, the proposed

algorithm reduces the required number of training samples

to approximately 1% of that required by the original PPM

algorithm at the expense of a negligible loss in performance.

V. CONCLUSIONS

Using experiments with eight keywords from the TIMIT

database we show that the proposed unsupervised online PPM

training algorithm gives a comparable performance to the

supervised PPM algorithm. This algorithm is useful in sce-

narios where limited number of annotated keyword samples is

available for training, for example, in low-resource languages

where the transcription data might not be available, also in

situations where the keyword is only used by a secretive group

for communication. The key features of the proposed approach

is the requirement of as less as 1% of the amount of data

required for PPM training to achieve a performance similar to

that of PPM. In future work, such unsupervised online learning

schemes can be extended to other KWS algorithms and also

for unsupervised online training of ASR systems. Although,

the proposed algorithm shows promising performance on the

TIMIT database, its effectiveness on low resource language

databases need to be verified.
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APPENDIX A

DERIVATION OF α(k)

The ML solution for the set θ
(k−1)
w by maximizing the like-

lihood function (2) with the observations O
(w)
(k−1) is obtained

as

θ(k−1)
w =







λ
(k−1)
p,d =

∑(k−1)

k̂=1
n
(k̂)
p,dD

∑(k−1)

k̂=1
T (k̂)

∣

∣

∣

∣

∣

∣

p ∈ P, 1 ≤ d ≤ D







(15)

where, T (k̂) is the duration of the k̂th detected sample and

n
(k̂)
p,d is the number of events for the pth phoneme in the dth

segment in the k̂th detected sample. Inclusion of one more

training sample to O
(w)
k would modify the solution of the

parameter as

θ(k)w =







λ
(k)
p,d =

∑k

k̂=1 n
(k̂)
p,dD

∑k

k̂=1 T
(k̂)

∣

∣

∣

∣

∣

∣

p ∈ P, 1 ≤ d ≤ D







(16)

=







λ
(k)
p,d =

∑k−1

k̂=1
T (k̂)

∑k

k̂=1 T
(k̂)

∑k−1

k̂=1
n
(k̂)
p,dD

∑k−1

k̂=1
T (k̂)

+
T (k)

∑k

k̂=1 T
(k̂)

n
(k)
p,dD

T (k)







=

{

λ
(k)
p,d =

∑k−1

k̂=1
T (k̂)

∑k

k̂=1 T
(k̂)

λ
(k−1)
p,d +

T (k)

∑k

k̂=1 T
(k̂)

λ̂p,d

}

Hence, from equation (16), we can see that choosing α(k)
as given is equation (14) ensures that the updated parameter

at every detected sample of a keyword exactly matches with

the respective ML solution.
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