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Abstract—In this paper, we develop a greedy algorithm for
sparse learning over a doubly stochastic network. In the proposed
algorithm, nodes of the network perform sparse learning by ex-
changing their individual intermediate variables. The algorithm
is iterative in nature. We provide a restricted isometry property
(RIP)-based theoretical guarantee both on the performance of the
algorithm and the number of iterations required for convergence.
Using simulations, we show that the proposed algorithm provides
good performance.

I. INTRODUCTION

Two pillar members of signal processing, modeling and

optimization for big data analysis are sparse learning and

distributed algorithms [1]. For big data analysis, another aspect

is the need of fast execution. In this context, low complexity

distributed algorithms for large-scale sparse learning has a

high potential [2], [3]. To realize large-scale distributed sparse

learning, recent activities are reported in [4], [5] where greedy

algorithms are designed and analyzed. A major advantage of

greedy algorithms is their low computational complexity and

hence their suitability for large-scale scenarios. However, the

associated algorithmic steps are non-convex, and often has a

limited analytical tractability.

In this article, we design a greedy algorithm for sparse learn-

ing that has low communication and computational costs, as

well as a good theoretical foundation. The proposed algorithm

exchanges estimates of underlying sparse signal over a doubly

stochastic network, unlike the case of [4] where other data is

also exchanged. The main contributions of this article are as

follows:

1) We propose a greedy algorithm for distributed sparse

learning, that is fast to converge, and has a low com-

munication cost.

2) We carry out a restricted-isometry-property (RIP) based

theoretical analysis. We also provide an upper bound on

the number of times the nodes exchange information for

convergence.

A. Relation to Prior Work

In this subsection, we provide a review of the relevant liter-

ature. A majority of the prior works have proposed convex op-

timization based algorithms for the problem of sparse learning

over networks due to their theoretical tractibility. Distributed

compressed sensing using convex optimization is addressed

in [6], [7]. Using alternating-direction-method-of-multipliers

(ADMM), distributed basis pursuit [8] and distributed LASSO

(D-LASSO) [9] were realized. D-LASSO is shown to solve the

exact convex optimization problem of a centralized scenario

in a distributed fashion.

Our paper proposes a distributed greedy algorithm for

sparse learning. In relation to that, a distributed iterative hard

thresholding algorithm was proposed in [10] for distributed

sparse learning in both static and time-varying networks.

There, each node of a network finds a local intermediate

estimate, and mean value of the set of estimates is found using

a global consensus. Further improvement on the work in [10]

was proposed in [11] to provide a reduced communication

cost. Another distributed iterative hard thresholding (DiHaT)

algorithm is developed in [4] where observations, measure-

ment matrices and local estimates are exchanged over network

to achieve consensus. The DiHaT algorithm provides fast

convergence compared to D-LASSO, and provides competitive

performance, but at the expense of a high communication cost.

In [4], an alternate algorithm was also proposed that only uses

estimate exchange, but without any theoretical analysis. Our

algorithm can be implemented in more general networks with

different measurement sizes at different nodes. In addition,

the proposed algorithm has a faster convergence as it does not

require consensus.

B. System Model, notations and preliminaries

We consider a connected network with L nodes. The neigh-

borhood of node l is defined by the set Nl ⊆ {1, 2, . . . , L}.
Each node is capable of receiving weighted data from other

nodes in its neighborhood. The weights assigned to links

between nodes can be written as a network matrix H =
{hi,j} ∈ R

L×L, where hi,j is the link weight from j’th node to

the i’th node. We assume that H is a doubly stochastic matrix.

Our task is to learn or estimate an N -length sparse signal x in

a distributed manner over the network. The observation vector

yl ∈ R
Ml at the l’th node is modeled as

yl = Alx+ el,

where Al ∈ R
Ml×N is a measurement or dictionary matrix

with Ml < N , and el ∈ R
Ml is the additive noise. We assume

that the sparse signal x has at most s non-zero scalar elements,

and s is known a-priori. The above assumption is used for

several greedy sparse learning algorithms, such as subspace

pursuit (SP) [12] and CoSaMP [13].

We use the calligraphic letter T to denote sub-sets of

Ω , {1, 2, . . . , N}. We use |T | and T c to denote the
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cardinality and complement of the set T , respectively. For the

matrix A ∈ R
M×N , a sub-matrix AT ∈ R

M×|T | consists of

the columns of A indexed by i ∈ T . Similarly, for x ∈ R
N ,

a sub-vector xT ∈ R
|T | is composed of the components

of x indexed by i ∈ T . Also, we denote (.)t and (.)†

as transpose and pseudo-inverse, respectively. In this article

A
†
T , (AT )†. We use ‖.‖ and ‖.‖0 to denote the standard

ℓ2 norm and ℓ0 norm of a vector, respectively. For a sparse

signal x = [x1, x2, . . . , xi, . . . , xN ]t, the support-set T of x is

defined as T = {i : xi 6= 0}. We define a function that finds

the s-length support of a vector, as supp(x, s) , {the set of

indices corresponding to the s largest amplitude components

of x}. The s-Restricted Isometry Constant (RIC) [14] of a

matrix A is denoted as δs.

The rest of the paper is organized as follows. The distributed

greedy algorithm and the associated theoretical results are

presented in Section II. Simulation results and discussions are

shown in Section III. Finally, the conclusions are presented in

Section IV.

II. DISTRIBUTED ALGORITHM - NGP

In this section, we describe the proposed distributed greedy

algorithm. We refer to the algorithm as network greedy pur-

suit (NGP). The algorithm is motivated by the algorithmic

structures of SP and CoSaMP. The pseudo-code of the NGP

algorithm is shown in Algorithm 1. The NGP algorithm

Algorithm 1 Network Greedy Pursuit - at l’th node

Known inputs: yl, Al, s, {hl,j}Lj=1

Initialization:

k ← 0 (k denotes time index)

rl,k ← yl (Residual at k’th time)

T̂l,k ← ∅ (Support-set at k’th time)

x̂l,k ← 0 (Sparse solution at k’th time)

Iteration:

repeat

k ← k + 1 (Iteration counter)

1: T̀l,k ← supp(At
lrl,k, s)

2: T̃l,k ← T̀l,k ∪ T̂l,k−1

3: x̃l,k such that x̃T̃l,k
← A

†
l,T̃l,k

yl ; x̃T̃ c
l,k
← 0

4: x̌l,k ←
∑

r∈Nl

hl,r x̃r,k (Information exchange)

5: T̂l,k ← supp(x̌l,k, s)

6: x̂l,k such that x̂T̂l,k
← A

†
l,T̂l,k

yl ; x̂T̂ c
l,k
← 0

7: rl,k ← yl −Alx̂l,k

until stopping criterion

Final output: x̂l, T̂l, rl

is executed locally at each node of the network. Denoting

k as the iteration counter for information exchange, the l’th
node receives an intermediate estimate x̃r,k, r ∈ Nl from its

neighboring nodes and performs the weighted sum (see step

4 of the algorithm). Note that x̃l,k and x̌l,k both can have

a sparsity level higher than s. The support finding function,

supp(.) incorporates pruning such that the a-priori knowledge

of the sparsity level is used to get an s-length estimate,

x̂l,k. The stopping criterion of the algorithm can be either

a predetermined number of iterations or a non-decreasing

ℓ2-norm of the residual. The NGP algorithm is designed

to improve performance via cooperation using information

exchange compared to no cooperation. Now we state the main

theoretical result of the algorithm.

Main result: In the NGP algorithm, the estimated sparse

signal x̂l,k follows a recurrence inequality, stated in the

following theorem.

Theorem 1: For the NGP algorithm, the estimate at the k’th

iteration satisfies,

‖x− x̂l,k‖≤
∑

r∈Nl

hl,r (c1‖x− x̂r,k−1‖+c2‖er‖) + c3‖el‖,

and

‖xT̂ c
l,k

‖≤ c1
∑

r∈Nl

‖xT̂ c
r,k−1

‖+c4
∑

r∈Nl

‖er‖,

where

c1 =
√

2δ2
3s(3−δ2

3s)

(1−δ2
3s)

2 ,

c2 =
√

2
1−δ2

3s

(c5 + c6), c3 =
√
1+δ2s

(1−δ3s)
,

c4 =
√
2(c5 + c6) +

√

2δ2
3s(3−δ2

3s)(1+δ2s)

(1−δ2
3s)

2(1−δ3s)2
and

c5 =

√
2(1−δ3s)+

√
1+δ3s

1−δ3s
, c6 =

√
1 + δ3s.

The proof of the above theorem is not shown here for brevity

and will be discussed in an extended manuscript later. In addi-

tion, we can compactly write the above recurrence inequality

at all the nodes in the form shown below.

Corollary 1: For the NGP algorithm, the estimate at the

k’th iteration satisfies,

L
∑

l=1

‖x− x̂l,k‖≤ c1
L
∑

l=1

‖x− x̂l,k−1‖+(c2 + c3)
L
∑

l=1

‖el‖,

and

L
∑

l=1

‖xT̂ c
l,k
‖≤ c1

L
∑

l=1

‖xT̂ c
l,k−1

‖+c4
L
∑

l=1

‖el‖.

Proof The above result follows from Theorem 1 by summing

up both sides ∀l and using the doubly stochastic property of

the network matrix, H.

We next show that under some technical conditions and the

condition c1 < 1, the NGP algorithm will converge in a finite

number of iterations. We have the following theorem on the

convergence of NGP.

Theorem 2: If δ3s < 0.362 and
‖x‖

‖e‖max
> 1, then after

k∗ = ⌈log
(

‖x‖
‖e‖max

)

/log
(

1
c1

)

⌉, the performance of the NGP

algorithm at the l’th node converges and is bounded by

‖x− x̂l,k∗‖≤ c7‖e‖max,

where ‖e‖max= maxl‖el‖ and c7 =
(

1 + c2+c3
1−c1

)

.

Proof From Theorem 1, at the k∗’th iteration, we can write

in the vector form,

‖x− x̂k∗‖ ≤ c1H‖x− x̂k∗−1‖+ (c3IL + c2H) ‖e‖,
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where ‖x− x̂k‖ , [‖x− x̂1,k‖. . . ‖x− x̂L,k‖]t and ‖e‖ ,

[‖e1‖. . . ‖eL‖]t. We assume component-wise inequality in the

above expression. The above bound can be simplified as

‖x− x̂k∗‖ ≤ c1H‖x− x̂k∗−1‖+ (c3IL + c2H) ‖e‖
max

(a)

≤ c1H‖x− x̂k∗−1‖+ (c2 + c3)‖e‖
max

,

where (a) follows from the right stochastic property of H

and ‖e‖
max

, [‖e‖max. . . ‖e‖max]
t
. Applying the above relation

iteratively and under the condition c1 < 1, we get

‖x− x̂k∗‖ ≤ (c1H)k
∗ ‖x− x̂0‖

+(c2 + c3)
(

IL + . . .+ (c1H)k
∗−1

)

‖e‖
max

(a)

≤ ck
∗

1 ‖x‖+ c2+c3
1−c1

‖e‖
max

,

where (a) follows from the right stochastic property of H

and the initial condition, ‖x − x̂l,0‖= ‖x‖, ∀l. Also, we

have defined ‖x‖ , [x . . .x]
t

in the above equation. The

technical condition c1 < 1 translates to the requirement

that δ3s of Al has to follow δ3s < 0.362. Substituting

k∗ = ⌈log
(

‖x‖
‖e‖max

)

/log
(

1
c1

)

⌉, we can write,

‖x− x̂k∗‖ ≤
(

1 + c2+c3
1−c1

)

‖e‖
max

.

The result follows from the component-wise inequality in the

above equation.

Remark: As an example, for δ3s < 0.20 and SMNR (defined

in Section III) of 20 dB, we have the number of iterations,

k∗ = 7 and c7 = 15.62.

The above theorem signifies that if δ3s < 0.362 and there

is no noise, then the NGP algorithm achieves exact estimate

of x at every node.

III. SIMULATION AND DISCUSSION

In this section, we study the performance of NGP algorithm.

We first describe the simulation setup and the test scenarios.

A. Simulation Setup

For simulations, given a choice of an edge matrix of a

network, H is computed via optimization of the second largest

eigenvalue modulus (SLEM) of the matrix. This is known

as the SLEM optimization problem in the literature [15].

For a fixed H, we perform Monte-Carlo simulations where

we randomly draw measurement matrices, sparse signals and

additive Gaussian noise. We used mean signal-to-noise error

(MSNR) as a performance metric, as defined below,

MSNR =
1

L

L
∑

l=1

E{‖x‖2}
E{‖x− x̂l‖2}

.

We consider that all measurement matrices across nodes are

of the same size, that means ∀l, Ml = M . This condition

is necessary for comparing with DiHaT [4]. Define signal-to-

measurement-noise ratio (SMNR) for the l’th node as,

SMNRl =
E{‖x‖2}
E{‖el‖2}

.
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Fig. 1: Probability of PSE for NGP and DiHaT, binary sparse

data, M = 100, N = 500, L = 20, d = 5, number of information

exchanges = 30, no observation noise.
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Fig. 2: MSNR of NGP and DiHaT with respect to SMNR,

Gaussian sparse data, M = 100, N = 500, s = 20, L = 20, d =

5, number of information exchanges = 30.

We further assume that ∀l, SMNRl are of the same value.

In [4], the greedy DiHaT algorithm is compared with the

convex D-LASSO and shown to provide faster convergence. In

our simulations, we compare NGP with DiHaT. The stopping

criterion of algorithms is a maximum allowable iterations that

we set as 30. This number is motivated by the experiment in

Section III-D.

We define a term called the degree of network to represent

how densely the network is connected. Let us denote the

degree of network by d. This means that each node of the

network is connected with d other nodes or ∀l, |Nl|= d.
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Fig. 3: MSNR of NGP and DiHaT with respect to the number

of information exchanges, binary and Gaussian sparse data, M

= 100, N = 500, s = 20, L = 20, d = 5, SMNR = 30 dB.

B. Phase transition experiment

In this experiment, we use binary sparse vector x such that

the non-zero elements are set to ones. We are interested in

the probability of perfect support-set estimation (PSE). Fixing

M = 100 and N = 500, we vary s and compare between NGP

and DiHaT. For this experiment, we used L = 20 nodes and

each node is connected with five other nodes. The experiment

requires noise-less observations. The PSE performance of the

NGP and DiHaT is shown in Fig. 1. It is evident from the

figure that the NGP can recover signals with a higher sparsity

level as compared to the DiHaT. This can be explained partly

by the higher RIC, δ3s = 0.362 for NGP as compared to

δ3s = 0.334 for DiHaT [4].

C. Experiment for robustness to measurement noise

In this experiment, we check how performance of the two

algorithms vary with respect to the SMNR. We used the same

network matrix of H from section III-B, and M = 100, N =
500, s = 20. The signal is generated as a Gaussian sparse

signal, where the non-zeros of x are i.i.d. Gaussian. We plot

the MSNR with respect to the SMNR in Fig. 2. It can be seen

that the performance of the NGP is better than that of the

DiHaT.

D. Influence of information exchange

In this experiment, we compare the performance of NGP

and DiHaT over iterations at 30 dB SMNR. We used the same

network matrix of H as in section III-B. For this experiment,

we used both binary and Gaussian sparse signals. Keeping

M = 100, N = 500 and s = 20, we plot the MSNR

performance of NGP and DiHaT with respect to the number of

information exchanges in the network. The results are shown

in Fig. 3. It can be seen that the NGP has a higher MSNR floor

compared to DiHaT for both the cases of binary and Gaussian

sparse signals. In addition, the NGP has a faster convergence

(less than five iterations) as compared to the DiHaT (around

20 iterations). Note that the performance of both the NGP and

DiHaT saturates after 30 iterations and hence the motivation

for fixing the stopping criterion as 30 iterations.

IV. CONCLUSION

We developed a distributed greedy algorithm to solve the

problem of sparse learning over networks. The proposed algo-

rithm iteratively refines the estimate at a node with information

from the neighboring nodes. The algorithm was shown to have

an RIP-based convergence guarantee. Under simulations, the

algorithm demonstrated a better estimation performance as

compared to the state-of-the-art distributed greedy algorithms

found in literature.
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