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Abstract—The class of the second-order oscillatory almost-
cyclostationary processes is characterized. These processes have
autocorrelation function which is the superposition of amplitude-

and angle-modulated complex sinewaves, where the modulating
functions, referred to as evolutionary cyclic autocorrelation
functions, depend on both time and lag parameter. This class of
processes includes that of the almost-cyclostationary processes.
The problem of statistical function measurements is addressed
for the special case of amplitude-modulated time-warped almost-
cyclostationary processes. These processes are shown to be a
suitable model for the electrocardiogram.

Index Terms—Oscillatory almost-cyclostationary processes;
evolutionary spectral analysis; electrocardiogram

I. INTRODUCTION

The cyclostationary and almost-cyclostationary (ACS) mod-

els have been suitably exploited for describing many natural

and man-made processes [1], [3], [7], [11], [17]. For second-

order wide-sense ACS processes, the autocorrelation is an

almost-periodic function of time. Its (generalized) Fourier

series expansion has frequencies, called cycle frequencies,

belonging to a countable set of possibly incommensurate

values and coefficients, called cyclic autocorrelation functions,

depending only on the lag parameter. Spectral components of

ACS processes are correlated when their separation is equal

to one of the cycle frequencies. This corresponds to a Loève

bifrequency spectrum [8] whose support is constituted by lines

with unit slope in the bifrequency plane.

By generalizing Priestley’s evolutionary spectral analysis

[16], the more general model of the oscillatory almost-

cyclostationary (OACS) processes has been recently proposed

in [10, Sec. 6]. For OACS processes, the autocorrelation

function is given by the superposition of amplitude- and

angle-modulated sinewaves whose frequencies are called cycle

frequencies. The modulating functions, referred to as evolu-

tionary cyclic autocorrelation functions, depend on both time

and lag parameter. In the special case where the evolutionary

cyclic autocorrelation functions do not depend on time, there is

no amplitude and/or angle modulation and the OACS process

reduce to an ACS one. In such a case, the evolutionary

cyclic autocorrelation functions are coincident with the cyclic

autocorrelation functions.

OACS processes turn out to be a suitable model for describ-

ing phenomena where the timing is irregular. Examples are

several biological signals and, in communications, the received

signal when there is relative motion between transmitter and

receiver with generic motion law.

In this paper, an OACS process is characterized by an un-

derlying ACS process and a linear time-variant (LTV) system

that transforms this ACS process into the OACS one. Then, an

OACS process is characterized in the frequency domain by its

Loève bifrequency spectrum. It is shown that it can be seen as

obtained by that of the underlying ACS process by spreading

the spectral correlation densities around the support lines.

As special case of OACS processes, the amplitude-

modulated (AM) time-warped (TW) ACS processes are con-

sidered and their characterization is provided. Results for time-

warped ACS processes [12] with no amplitude modulation are

extended here to estimate the time-warping and amplitude-

modulation functions of AM-TW ACS processes and for

recovering the underlying ACS process.

As an example of application, the AM-TW ACS model

is proposed for the electrocardiogram (ECG). In the model,

the underlying ACS signal is given by the superposition of

a periodic signal and a zero-mean ACS signal. The time-

warping and amplitude-modulation functions are linked to

the variability with time of the heart rate and the variation

in propagation of the electric wave throughout the heart.

Numerical results are presented to corroborate the proposed

model.

The paper is organized as follows. In Section II, wide-

sense stationary and oscillatory processes are briefly reviewed

to introduce notation. The class of the OACS processes is

characterized is Section III. The special case of AM-TW ACS

processes is treated in Section IV and the recovery of the

underlying ACS process addressed in Section V. Numerical

results on the ECG signal are reported in Section VI and

conclusions are drawn in Section VII.

II. WIDE-SENSE STATIONARY AND OSCILLATORY

PROCESSES

Let x(t) be a continuous-time second-order harmonizable

wide-sense stationary (WSS) process. It admits the Cramér

representation [8]

x(t) =

∫

R

ej2πft dZ(f) (1)
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where the integrated complex spectrum Z(f) is an orthogonal-

increment process, that is,

E
{
dZ(f1) dZ

(∗)(f2)
}
= δ(f2 + (−)f1) dµx(f1) df2 . (2)

In (2), δ(·) is Dirac delta, (∗) represents an optional complex

conjugation, (−) is an optional minus sign linked to (∗), and

µx(f1) is a bounded measure on R. Subscript x denotes xx(∗).
WSS processes have (conjugate) autocorrelation depending

only on the lag parameter τ

E
{
x(t+ τ) x(∗)(t)

}
=

∫

R

ej2πfτ dµx(f) (3)

and constant average power

E
{
|x(t)|2

}
=

∫

R

dµxx∗(f) . (4)

In [16], the class of the oscillatory processes is introduced

aimed at describing processes with (slowly) time-varying

average power. They admit the representation

y(t) =

∫

R

At(f) e
j2πft dZ(f) (5)

where Z(f) is an orthogonal-increment process (see (2)) and

{At(f)} is a family (labeled by f ) of low-pass functions of t
(i.e., slowly varying with respect to t). Oscillatory processes

have time-varying (conjugate) autocorrelation function

E
{
y(t+ τ) y(∗)(t)

}
=

∫

R

At+τ (f)A
(∗)
t (−(−)f)ej2πfτdµx(f)

(6)

and time-varying average power

E
{
|y(t)|2

}
=

∫

R

|At(f)|
2 dµxx∗(f) . (7)

The function dσxx∗,t(f) , |At(f)|
2 dµxx∗(f) is referred to

as evolutionary spectrum.

III. OSCILLATORY ALMOST-CYCLOSTATIONARY

PROCESSES

A process y(t) is said to be oscillatory ACS if it admits

representation (5) with Z(f) integrated complex spectrum of

an ACS process x(t) [10, Sec. 6]. That is, x(t) has Cramér

representation (1) with

E
{
dZ(f1) dZ

(∗)(f2)
}
=

∑

α∈A

δ(f2+(−)(f1−α))dµ
α
x
(f1)df2.

(8)

In (8), {µα
x
(f1)}α∈A is a family of complex measures and A

is the countable set of possibly incommensurate (conjugate)

cycle frequencies of the almost-periodic (conjugate) autocor-

relation function

E
{
x(t + τ) x(∗)(t)

}
=

∑

α∈A

Rα
x
(τ) ej2παt (9)

where Rα
x
(τ) are the (conjugate) cyclic autocorrelation func-

tions of x(t).
If µα

x
(f1) does not contain the singular component, then

dµα
x
(f1) = Sα

x
(f1) df1, where Sα

x
(f1) is the (conjugate)

cyclic spectrum of x(t) that possibly contains Dirac deltas in

correspondence of the jumps of µα
x
(f1). The (conjugate) cyclic

spectrum Sα
x
(f1) is the Fourier transform of the (conjugate)

cyclic autocorrelation function Rα
x
(τ).

Starting from (5) and (8), one obtains the (conjugate)

autocorrelation function of the OACS processes

E
{
y(t+ τ) y(∗)(t)

}
=

∑

α∈A

ρα
y
(t, τ) ej2παt (10)

where the functions

ρα
y
(t, τ) ,

∫

R

At+τ (f)A
(∗)
t ((−)(α− f)) ej2πfτdµα

x
(f) (11)

are referred to as evolutionary (conjugate) cyclic autocorrela-

tion functions. Subscript y denotes yy(∗).
For ACS processes, the (conjugate) autocorrelation function

is the superposition of complex sinewaves whose frequencies

are the (conjugate) cycle frequencies and whose complex

amplitudes are the (conjugate) cyclic autocorrelation functions

(that depend only on the lag parameter τ ) (see (9)). For

OACS processes, the (conjugate) autocorrelation function is

the superposition of amplitude- and angle-modulated complex

sinewaves (see (10)) whose frequencies are the (conjugate)

cycle frequencies of the underlying ACS process (see (8))

and the modulating functions are the evolutionary (conjugate)

cyclic autocorrelation functions.

Note that the OACS model is useful if the evolutionary

(conjugate) cyclic autocorrelation functions ρα
y
(t, τ) defined

in (11) are slowly varying with respect to ej2παt. That is, if

sup
τ
B(α, τ) ≪ |α| ∀α ∈ A− {0} (12)

where B(α, τ) is the bandwidth of ρα
y
(t, τ) as function of t

(with α and τ fixed).

The functions

dσα
y,t(f) , At(f)A

(∗)
t ((−)(α− f)) dµα

x
(f) (13)

are named evolutionary (conjugate) cyclic spectra and the

time-varying averaged power of y(t) is given by

E
{
|y(t)|2

}
=

∑

α∈A

∫

R

dσαyy∗,t(f) e
j2παt . (14)

The Fourier transform of y(t) in (5), defined in a distri-

butional sense [4, Chap. 3], [6], [9, Secs. 1.1.2, 4.2.1], [10,

Sec. 3], can be formally expressed as

Y (f) ,

∫

R

y(t) e−j2πft dt =

∫

R

A(f − ν; ν) dZ(ν) (15)

where

A(f ; ν) ,

∫

R

At(ν) e
−j2πft dt . (16)

Thus, from (15) and (8), one obtains the Loève bifrequency

spectrum for the OACS process y(t)

E
{
Y (f1) Y

(∗)(f2)
}
=

∑

α∈A

∫

R

Sα
x
(ν)A(f1 − ν; ν)

A
(∗)

(f2 − (−)(α − ν); (−)(α− ν)) dν . (17)
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The ACS processes are a special case of OACS processes

when At(f) = 1. Consequently, A(f ; ν) = δ(f), y(t) ≡ x(t),
and the Loève bifrequency spectrum of y(t) is coincident with

that of x(t) (see (8))

E
{
Y (f1) Y

(∗)(f2)
}
=

∑

α∈A

Sα
x
(f1)δ(f2−(−)(α−f1)). (18)

Therefore, the Loève bifrequency spectrum (17) can be seen as

obtained by the Loève bifrequency spectrum of the underlying

ACS process x(t) by spreading around the support lines

f2 = (−)(α− f1), α ∈ A, the (conjugate) spectral correlation

densities Sα
x
(f1), α ∈ A.

Every OACS process can be obtained by LTV filtering of

an ACS process x(t) with Cramér representation (1). In fact,

replacing (1) into

y(t) =

∫

R

h(t, u) x(u) du (19)

where h(t, u) is the impulse-response function of the LTV

system, one has that y(t) admits the representation (5) with

At(f) =

∫

R

h(t, u) ej2πf(u−t) du . (20)

If x(t) is ACS (that is, its integrated complex spectrum Z(f)
satisfies (8)), then y(t) is OACS.

The process x(t) is named the underlying ACS process of

the OACS process y(t). The LTV system h(t, u) is named the

evolution-inducing LTV system of the OACS process y(t). In

fact, when h(t, u) is not almost-periodically time variant, it

modifies the (conjugate) cyclic spectra of the underlying ACS

process x(t) into the evolutionary (conjugate) cyclic spectra

of the OACS process y(t).

Statistical function estimation for the general case of OACS

processes is still an open problem. In the following sections,

the special class of AM-TW ACS processes is characterized

and a procedure for their statistical function measurements

outlined.

IV. AMPLITUDE-MODULATED TIME-WARPED ACS

PROCESSES

A LTV system that modifies time scale and amplitude of

the input signal x(t)

y(t) =

∫

R

h(t, u) x(u) du = a(t) x(ψ(t)) (21)

is refereed to as time-warping and amplitude-modulation trans-

formation.

In (21), h(t, u) = a(t) δ(u − ψ(t)), a(t) is the possibly

complex-valued amplitude-modulation function, and ψ(t) is

the real-valued time-warping function. Both a(t) and ψ(t) are

deterministic. ψ(t) is assumed asymptotically unbounded and

nondecreasing. Note that ψ(t) should not be confused with the

timing jitter which, in general, is described as a discrete-time

random process.

If x(t) is ACS with (conjugate) autocorrelation (9), y(t) is

referred to as AM-TW ACS. Its (conjugate) autocorrelation is

E
{
y(t+ τ) y(∗)(t)

}

=a(t+ τ) a(∗)(t)
∑

α∈A

Rα
x

(
ψ(t+ τ)− ψ(t)

)
ej2παψ(t) .

(22)

The process y(t) can be modeled as OACS with modulating

functions

At(f) = a(t) ej2πf(ψ(t)−t) (23)

evolutionary (conjugate) cyclic spectra

dσα
y,t(f) = a(t) a(∗)(t) ej2πα(ψ(t)−t) dµα

x
(f) (24)

and evolutionary (conjugate) cyclic autocorrelation functions

ρα
y
(t, τ) = a(t+ τ)a(∗)(t)ej2πα(ψ(t)−t)Rα

x

(
ψ(t+ τ)−ψ(t)

)
.

(25)

Let us assume that

ψ(t) = t+ ǫ(t) (26)

with ǫ(t) differentiable and slowly varying with respect to t
(whose derivative is 1), that is,

sup
t

∣∣ .ǫ(t)
∣∣ ≪ 1 (27)

where
.
ǫ(t) is the first-order derivative of ǫ(t). In addition, let

us assume that a(t + τ) ≃ a(t) for all τ such that Rα
x
(τ) is

significantly non zero.

In such a case, the OACS model characterized by (23),

(24), and (25) reduces to a modulated cyclical model [10,

Sec. 6.2.2], [15]. Expression (22) of the (conjugate) autocor-

relation simplifies into

E
{
y(t+ τ) y(∗)(t)

}

=a(t) a(∗)(t)
∑

α∈A

ej2παǫ(t) Rα
x
(τ) ej2παt . (28)

The proof, not reported here for lack of space, is a general-

ization of that for Theorem 3.6 in [12].

V. RECOVERY OF THE UNDERLYING ACS PROCESS

Let us consider the AM-TW ACS process defined in (21)

under the assumptions such that expression (28) for the

autocorrelation holds and with a(t) real and positive. In this

section, a procedure for the recovery of the underlying ACS

process x(t) is outlined. For this purpose, first functions a(t)
and ǫ(t) are estimated. Then, by de-warping and amplitude-

modulation compensation, an estimate of the underlying ACS

signal x(t) is obtained. This procedure generalizes to the case

of a(t) not constant the procedure proposed in [12] for the

case a(t) = 1.

Let α0 be a (conjugate) cycle frequency of x(t) and let us

assume that only its coarse estimate, say α̃0 is available, for

example, by locating the peaks of the power spectral density

(PSD) of y(t + τ) y(∗)(t). In fact, from (28) it follows that

spectral components of E{y(t + τ) y(∗)(t)} are concentrated
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around the cycle frequencies α ∈ A. The value of τ such that

|Rα
x
(τ)| peaks should be chosen. In most cases τ = 0 is the

right choice for all α.

Let hW (t) be the impulse response function of an ideal low-

pass filter with monolateral bandwidth W and let us define

zα̃0(t, τ) ,
[
y(t+ τ) y(∗)(t) e−j2πα̃0t

]
⊗ hW (t) . (29)

It results that

E
{
zα̃0(t, τ)

}
≃ a2(t)Rα0

x
(τ) ej2πα0ǫ(t) ej2π(α0−α̃0)t (30)

provided that

|α0−α̃0|+B
α0 < W+|α0−α̃0| < inf

α∈A
α6=α0

(
|α−α̃0|−B

α
)

(31)

where Bα is the monolateral bandwidth of

a2(t) ej2παǫ(t). In (31), the first inequality assures that

a2(t) ej2πα0ǫ(t) ej2π(α0−α̃0)t passes unaltered through

hW (t) and the second inequality assures that the terms

a2(t) ej2παǫ(t) ej2π(α−α̃0)t (see (28)) with α 6= α0 are

filtered out. The value of W is chosen as the width of the

peak around the zero frequency of the PSD of the function

t 7→ y(t+ τ) y(∗)(t) e−j2πα̃0t.

From (30), it follows that a(t) can be estimated, but for a

constant (with respect to t) multiplicative factor, as

â(t) =
∣∣zα̃0(t, τ)

∣∣1/2 . (32)

In addition, from (30) we have

arg
[
E
{
zα̃0(t, τ)

}]

≃ arg
[
Rα0

x
(τ)

]
+ 2πα0ǫ(t) + 2π(α0 − α̃0)t mod 2π (33)

where arg[·] denotes the argument of the complex number

in the brackets and mod 2π is the modulo 2π operation.

Therefore, ǫ(t) can be estimated (to within an unknown

constant representing a fixed time delay) as

ǫ̂(t) =
1

2πα̃0

[
arguw

[
zα̃0(t, τ)

]
− (m̂t+ q̂)

]
(34)

where arguw denotes the unwrapped phase and m̂ and q̂ are

estimates of the coefficients of the affine term in (33). They

are obtained, for example, by least-squares linear regression

on the available data arguw[z
α̃0(t, τ)].

Under the assumption of ǫ(t) small and slowly varying (see

(27)), it can be shown that the inverse function of ψ(t) =
t + ǫ(t) can be closely approximated as ψ−1(t) = t − ǫ(t).
Thus, accounting for (21), an estimate of x(t) can be recovered

from the available data y(t) by de-warping and compensating

the amplitude modulation

x̂(t) =
y(t− ǫ̂(t))

â(t− ǫ̂(t))
(35)

for all t such that â(t− ǫ̂(t)) 6= 0.

Starting from x̂(t), estimates of (conjugate) cyclic auto-

correlation functions and (conjugate) cyclic spectra can be

built. From estimates of the (conjugate) cyclic autocorrelations

of x(t) and estimates of a(t) and ǫ(t), an estimate of the

(conjugate) autocorrelation of the OACS signal y(t) can be

obtained (see (28)). In addition, once x̂(t) is available, all

the well known signal processing algorithms for ACS signals

(e.g., FRESH filtering to remove undesired additive signals)

[3], [11] can be suitably exploited.

An alternative procedure for recovering the underlying ACS

signal from a time-warped ACS signal is proposed in [2]. The

comparison of the techniques proposed in [2] and [12] is made

in [13].

VI. NUMERICAL RESULTS

In this section, the ECG signal is modeled as AM-TW

ACS and an experiment is conducted aimed at estimating

the time-warping and amplitude-modulation functions and

at recovering the underlying ACS signal by exploiting the

estimation procedure described in Section V.

Let T0 be the average cardiac cycle, that is, the reciprocal

of the average heart rate α0. In practice, the average is made

within the observation interval. The ECG signal is modeled

here as the AM-TW ACS signal y(t) in (21), where x(t)
is a real-valued cyclostationary signal with period T0 that

can be decomposed into a periodic function with period

T0 and a zero-mean cyclostationary signal with period of

cyclostationarity T0. Thus, the cycle frequencies of x(t) are

k/T0, k integer. The time-warping function ψ(t) = t + ǫ(t),
with ǫ(t) satisfying (27), describes the variability with time

of the heart rate and possibly accounts for the presence of

artifacts. The time-varying amplitude a(t) is due to variation

in the propagation of the electrical wave throughout the heart

and possibly to artifacts. The validity of the assumptions made

in Sec. IV to obtain the autocorrelation (28) are verified a

posteriori. The evolutionary cyclic autocorrelation functions

of the conjectured signal model for the ECG signal are

given by the terms of the sum over α in (28), where the

cyclic autocorrelation functions are non summable due to the

presence of the periodic term in x(t).
The signal stored in the data file m001.dat taken form the

CEBS database available at https://physionet.org [5]

is considered. It corresponds to a healthy 30 year male. The

signal y(t)−〈y(t)〉t is analyzed, where 〈y(t)〉t is the temporal

mean of y(t). The digitalized signal y(t)|t=nTs
is obtained

with sampling frequency fs = 1/Ts = 250 Hz. The data is

converted into Matlab/Octave format by the wfdb toolbox

[18]. In the experiment, N = 215 samples are taken. This

corresponds to a data-record length T = NTs ≃ 131 s.
In Fig. 1 (top), the magnitude of the frequency-smoothed

cyclic periodogram [1, Chap. 13] of the ECG signal y(t)
is reported. Accordingly with (17), cyclic features of the

underlying cyclostationary signal x(t) are spread around the

cycle frequencies k/T0.

A coarse estimate of the average heart rate α0 , 1/T0
starting from the observation interval [0, T ] is derived as α̃0 =
n(T )/T , where n(T ) is the number of spikes in y(t) within

the observation interval. Then, the time-warping and amplitude

modulation functions are estimated by the procedure outlined

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 1707



in Section V and an estimate of the underlying cyclostationary

signal x(t) is obtained by (35).

In Fig. 1 (middle), the magnitude of the frequency-

smoothed cyclic periodogram of the de-warped and amplitude-

modulation compensated signal x̂(t) is reported. According

with the conjectured model, x(t) is cyclostationary since cyclic

features are evident in correspondence of cycle frequencies

k/T0. Moreover, spikes whose shape is that of the frequency-

smoothing window are present. They correspond to the Dirac

deltas in the cyclic spectrum as a consequence of the additive

periodic component in x(t) [11, Sec. 2]. These spikes are

removed by median filtering the cyclic periodogram. In Fig. 1

(bottom), the magnitude of the median-frequency-smoothed

cyclic periodogram [14] of x̂(t) is reported. It is an estimate

of the 2nd-order cyclic polyspectrum, that is, the inverse

Fourier transform of the cyclic covariance which is the cyclic

autocorrelation function of the zero-mean ACS component of

x(t).
The measurement results reported in Fig. 1, corroborate the

conjectured model for the ECG signal. The same behavior

for the estimated cyclic statistics is found using ECGs in the

database measured on different subjects.

Fig. 1. Top: Frequency-smoothed cyclic periodogram for the ECG
signal y(t). Middle: Frequency-smoothed cyclic periodogram for the
de-warped signal x̂(t). Bottom: Median-frequency-smoothed cyclic
periodogram for the de-warped signal x̂(t). All estimates are func-
tions of α/fs and f/fs .

VII. CONCLUSION

The recently introduced class of oscillatory almost-

cyclostationary processes is characterized in the frequency

domain by the Loève bifrequency spectrum. It is shown that it

can be seen as obtained by that of an underlying ACS signal

by spreading the spectral correlation densities around the

support lines. As special case of OACS processes, the AM-TW

ACS processes are analyzed and a procedure is proposed to

estimate the time-warping and amplitude-modulation functions

and for recovering the underlying ACS process. Then, the

ECG signal is suitably modeled as AM-TW ACS process.

Numerical results on real data confirm the conjectured model

that the underlying ACS signal is given by the superposition

of a periodic signal and a zero-mean ACS signal.
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