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Abstract—In Big Data Processing we typically face very large
data sets that are highly structured. To save the computation
and storage cost, it is desirable to extract the essence of the
data from a reduced number of observations. One example of
such a structural constraint is sparsity. If the data possesses a
sparse representation in a suitable domain, it can be recovered
from a small number of linear projections into a low-dimensional
space. In this case, the degree of sparsity, referred to as sparsity
order, is of high interest. It has recently been shown that if
the measurement matrix obey certain structural constraints, one
can estimate the sparsity order directly from the compressed
data. The rich structure of the measurement matrix allows to
rearrange the multiple-snapshot measurement vectors into a
fourth-order tensor with rank equal to the desired sparsity order.
In this paper, we exploit the multilinear structure of the data for
accurate sparsity order estimation with improved identifiability.
We discuss the choice of the parameters, i.e., the block size,
block offset, and number of blocks, to maximize the sparsity
order that can be inferred from a certain number of observa-
tions, and compare state-of-the-art order selection algorithms for
sparsity order estimation under the chosen parameter settings.
By performing an extensive campaign of simulations, we show
that the discriminant function based method and the random
matrix theory algorithm outperform other approaches in small
and large snapshot-number scenarios, respectively.

Index Terms—Compressed sensing, sparsity order, order se-
lection, tensor decomposition

I. INTRODUCTION

The availability of low-cost massive digital storage devices
in connection with the ever-growing availability of signif-
icant computational power, sensing devices and high-speed
communication links has led to an unprecedented need of
processing very large sets of data efficiently. Applications
include health care, government and public sector, natural
resource management, commerce, social networking and many
more [1]. The tremendous size of the data calls for new
paradigms in signal processing as classical tools like PCA are
inapplicable due to their complexity [1], [2].

Despite its size, the big data sets are typically highly
structured [2]. It is therefore highly desirable to extract the
essence of the data (its structure) from a reduced-dimensional
view (also referred to as a sketch [3]) of the data. One example
of such a structural constraint is sparsity, i.e., the assumption
that the data possesses a sparse representation in a (known)

basis. Leveraging the results from the compressed sensing field
[4], [5], we know that in this case, the structure of the data can
be inferred from a relatively small number of linear projections
of the data, provided that the degree of sparsity (the sparsity
order) is low.

To this end, the knowledge of the sparsity order appears to
be an important factor as it allows to judge the complexity
of the data. On the one hand, this information can be used to
tune the number of projections that need to be taken, on the
other hand, it can assist a subsequent sparse recovery stage as
well.

In [6], we have shown that the sparsity order estimation
(SOE) problem can be transferred to the problem of estimating
the rank of an observation matrix constructed from rearranging
the low-dimensional observation vector into a matrix form. As
shown in [6] this is possible if and only if the sensing matrix
is equal to the Khatri-Rao product of two full rank matrices.
Moreover, when the columns of the observation matrix over-
lap, one of the two factors needs to be a Vandermonde matrix.
The structure of the Vandermonde sensing matrix allows to
rearrange the observation vector into a third-order tensor in
the single measurement vector case or a fourth-order tensor
in the multiple measurement vector case, respectively. In both
cases, the rank of the tensor is equal to the desired sparsity
order.

In this paper, we exploit the rich multilinear structure of
the observed data to improve the identifiability and detec-
tion performance. We discuss the choice of the parameters,
i.e., the block size, block offset, and number of blocks, to
maximize the sparsity order that can be inferred from a
certain number of observations, and compare state-of-the-art
model order selection algorithms for sparsity order estimation
under such parameter settings. Simulation results show that
in the presence of independent and identically distributed
(i.i.d.) Gaussian white noise, the discriminant function based
method (DFBM) in [7] presents the overall best performance
in the small snapshot-number scenario and the random matrix
theory (RMT) algorithm in [8] performs the best in the large
snapshot-number scenario.

The remainder of the paper is organized as follows. Sec-
tion II presents the data model for sparsity order estimation,
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and shows how to rearrange the measurement vectors at
multiple snapshots into a fourth-order tensor with rank equal to
the desired sparsity order. Section III discusses how to exploit
the multilinear structure in the measured data to improve the
identifiability and performance of sparsity order estimation.
Simulations results are presented in Section IV to assess
the sparsity order estimation performance of state-of-the-art
algorithms. Finally, conclusions are drawn in Section V.

II. DATA MODEL

Let us assume that we observe one or multiple snapshots
of a data vector x(t) ∈ CN×1 (a signal or an image),
t = 1,2, . . . , T , where N is the number of samples or pixels
and can be very big. We assume that x(t) has a sparse
representation in a known basis A ∈ CN×N which is assumed
unitary without loss of generality. Therefore, we can write
x(t) =A ⋅s(t), where s(t) ∈ CN×1 is K-sparse with K ≪ N .
In the multiple snapshot case, we assume that the sparsity
pattern is constant over the T snapshots, i.e., the support
of s(t) does not change over T . In practice, this is often
a reasonable assumption for some not too large observation
window where the signal is stationary. Note that if the support
pattern does change within T snapshots, it is possible to
accommodate this change by defining an effective support set
S = ⋃

t=1,2,...,T
supp{s(t)} as long as K = ∣S∣ is still small

enough in the sense that K ≪ N .
Since the dimension N is very large, we do not want to

carry out any operations on the vector x(t) directly. Instead,
we assume that all we have available is a set of M ≪ N linear
measurements of x(t), which can be described via

y(t) =Ψ ⋅x(t), (1)

where Ψ ∈ CM×N is the measurement kernel. As explained in
[6], for the purpose of sparsity order estimation, we can seg-
ment each single observation vector y(t) into B overlapping
smaller vectors of size m, and obtain an observation matrix
Y (t) ∈ Cm×B . Specifically, the b-th column of Y (t) contains
samples (b−1) ⋅p+1 up to (b−1) ⋅p+m, where p is the block
advance and we have B = M−m

p
+ 1. We can then show that

for a K-sparse signal we have rank{Y (t)} =K if and only if
we choose Ψ = (C ◇Φ0) ⋅AH where ◇ represents the Khatri-
Rao product (columnwise Kronecker product) of two matrices,
and Φ0 ∈ Cp×N and C ∈ CM

p ×N both have a Kruskal-rank1 of
at least K. In addition, if p < m, which means that adjacent
blocks are overlapping, C needs to be a Vandermonde matrix.

Note that with the above choice of Ψ, the observation matrix
Y (t) ∈ Cm×B can be written as

Y (t) = (Cm
p
◇Φ0) ⋅ diag{s(t)} ⋅CT

B , (2)

where Cq denotes the first q rows of the (Vandermonde) matrix
C. It is clear from (2) that instead of a measurement matrix

1The Kruskal-rank of a matrix A is defined as the largest integer k such
that any set of k columns of A are linearly independent. Obviously, if a
matrix A has full Kruskal-rank, it also has full rank.

Y (t) we can define a measurement tensor Y of size p× m
p
×

B × T which is given by

Y = I4,N ×1 Φ0 ×2 Cm
p
×3 CB ×4 S

T (3)

where I4,N is the four-way N ×N ×N ×N identity tensor
and S ∈ CN×T collects the complex-valued coefficients s(t)
at all time instants. The link between (2) and (3) is given by
Y (t) = [Y(∶,∶,∶,t)]

T

(3), where [⋅](n) denotes the n-mode matrix
unfolding, cf. [9], and Y(∶,∶,∶,t) represents the t-th 4-mode slice
(of size p × m

p
×B) of the four-way tensor Y . Since S is K-

row-sparse, we can reformulate (3) into

Y = I4,K ×1 Φ0,K ×2 Cm
p ,K

×3 CB,K ×4 S
T
K , (4)

where the additional index K means that the matrix is limited
to the K columns corresponding to the active support set (i.e.,
the non-zero rows of S). As evident from (4), Y has a rank of
K. Compared with the matrix representation in (2), the tensor
representation in (4) manifests the multilinear structure in the
measured data which allows to increase the maximum number
of detectable signals (i.e., detection capability) [10] as well as
improve the order estimation accuracy.

So far, the data model was formulated in the absence of
noise. In practice, we may have to account for an additive
noise term, either due to noisy measurements or to signals
that are not exactly but only approximately K-sparse (e.g.,
compressible signals) [11]. Therefore, our goal is to infer the
sparsity order K from an observed noisy version of (4).

III. SPARSITY ORDER ESTIMATION EXPLOITING THE
TENSOR STRUCTURE

Tensor-based approaches to multilinear rank estimation such
as the core consistency diagnostic [12], difference in fit [13]
and numerical convex hull [14], require computationally ex-
pensive CANDECOMP/PARAFAC decomposition [15] which
factorizes a tensor into a sum of component rank-one tensors.
A computationally more attractive way is to rearrange the
elements of the tensor data into a matrix with the unfolding
operation [9], and then use the eigenspectrum associated with
the unfolded matrix for detecting the number of signals.
Under independent and identically distributed (i.i.d.) Gaussian
assumption of the data samples, the eigenvalues that are asso-
ciated with the noise-only space will be similar in magnitude
and much smaller than the signal-bearing eigenvalues. The
number of signals can therefore be estimated either by testing
the equality of the smallest eigenvalues using information the-
oretic criterion, e.g., the minimum description length (MDL)
and Akaike information criterion (AIC) [16], or by analyzing
the properties of the noise-only eigenvalues based on the RMT
to detect the gap between the signal-bearing and noise-only
eigenvalues [8], [17].

A. Choice of Unfolded Matrix of Y and Size Parameters to
Improve Identifiability

The unfolding, also known as matricization, of a tensor is
the operation for transforming a tensor into a matrix. The
relationship between the rank of an unfolded matrix of a tensor
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and the tensor rank is investigated in Theorem 4.2 of [18].
The results show that under mild conditions the rank of a
tensor is equal to its mode rank with probability 1. Since
the sparsity order is unknown, for safety we should employ
the unfolded matrix that allows us to be able to detect the
maximum sparsity order. For the eigenvalue-based model order
selection schemes [8], [16], [17], this often means that we
choose the unfolded matrix of Y with maximize size2.

However, from the construction of Y in Section II, the
largest rank that a unfolded matrix of Y is actually able to
accommodate may be less than its size. For example, the
maximum column rank of [Y](4) is M instead of mB. The
unfolded matrices of the fourth-order tensor Y ∈ Cp×m

p ×B×T

in Eq. (3), their sizes, and the largest rank that they are able
to accommodate, are summarized in Table I.

TABLE I
THE UNFOLDED MATRICES OF Y ∈ Cp×m

p
×B×T

IN EQ. (3), THEIR SIZES
AND THE LARGEST RANK THAT THEY ARE ABLE TO ACCOMMODATE.

Unfolding of Y Size Maximum Rank
1-mode unfolding: [Y](1) p × mBT

p
min{p, MT

p
}

2-mode unfolding: [Y](2) m
p
× pBT min{m

p
, pBT}

3-mode unfolding: [Y](3) B ×mT min{B,mT}
4-mode unfolding: [Y](4) T ×mB min{T,M}

(1,2)-mode unfolding: [Y](1,2) m ×BT min{m,BT}
(1,3)-mode unfolding: [Y](1,3) pB × mT

p
min{pB, mT

p
}

(1,4)-mode unfolding: [Y](1,4) pT × mB
p

min{pT, M
p
}

In Table I, we have chosen only one unfolded matrix from
each pair of mutually-transposed unfolded matrices of Y , since
they share a common set of non-zero eigenvalues. In the first
four unfolded matrices, each column is formed by one mode
of the tensor while in the last three matrices each column is
formed by two modes of the tensor [19], [20]. Note that the
maximum column rank of [Y](1), [Y](4) and [Y](1,4) are
MT
p

, M and M
p

, instead of mBT
p

, mB and mB
p

, respectively.
We find the block length m, block advance p and number

of blocks B to maximize the rank that the unfolded matrices
of Y can accommodate:

maximize
p,m,B

f(p,m,B)

subject to (B − 1)p +m =M,

1 ≤ p <m ≤M,1 ≤ B ≤M,

p,m,B are integers and p divides m,

(5)

where f(p,m,B) is defined at the top of next page.
By solving (5), the (1,2)-mode unfolding is optimal, with

p∗ = 1,m∗ = T

T + 1
(M + 1) ,B∗ = 1

T + 1
(M + 1) ,

f(p∗,m∗,B∗) =min{m∗,B∗T} = T

T + 1
(M + 1) (7)

2For a measured data matrix of size Q by L, where Q and L represent
the spatial dimension and sample size, respectively, the number of non-
zero eigenvalues available for use is min{Q,L}. The eigenvalue-based
order selection algorithms assume that at least one non-zero eigenvalue is
a pure-noise eigenvalue. Therefore, the number of signals can not exceed
min{Q,L} − 1.

when T ≤M , and with

m∗ =M,B∗ = 1, f(p∗,m∗,B∗) =min{m∗,B∗T} =M (8)

when T >M .
The proof is omitted due to space limit.

B. Sparsity Order Estimation

In (4), the factor matrices C m
p ,K

and CB,K of Y have
a Vandermonder structure, and the noise component matrix
contains repeated entries in the case of overlapping blocks.
This violates the assumptions of the stationarity of the signal
and/or statistical independence of noise underlying the state-
of-the-art eigenvalue-based algorithms [8], [16], [17].

Therefore, we turn our attention to a heuristic discriminant
function based method [7] for sparsity order estimation due
to its computational simpleness and good empirical perfor-
mance. The DFBM does not rely on assumptions of stationary
signals or independent noise. Instead, it considers estimation
of the model order K as a classification problem where the
eigenvalues are divided into two classes, one is formed of
signal-bearing eigenvalues and the other is formed of pure-
noise eigenvalues. The boundary of the two classes, i.e., the
location of the smallest signal-bearing eigenvalue, K, is found
using the following cost function:

DFBM(k) = g1(k) − g2(k), (9)

where g1(k) and g2(k) are the discriminant functions associ-
ated to the signal and noise subspaces, respectively. The g1(k)
is defined such that it is much larger in the signal subspace
than in the noise subspace while g2(k) is much larger in the
noise subspace than in the signal subspace.

Denote the sample eigenvalues associated with the chosen
unfolded matrix of Y as `1 ≥ `2 ≥ ⋅ ⋅ ⋅ ≥ `Q > 0, where Q is
the number of non-zero eigenvalues. Based on the assumption
that the variation of the ordered signal-bearing eigenvalues
and of the ordered pure-noise eigenvalues are both linear, the
discriminant functions g1(k) and g2(k) are derived in [7]:

g1(k) =
`k
Q

∑
i=2
`i

, k = 2,3, . . . ,Q (10)

and
g2(k) =

ξk
Q−1
∑
i=1

ξi

, k = 1,2, . . . ,Q − 1 (11)

where ξk = 1 − α `k−µk

µk
with

µk =

Q

∑
i=k+1

`i

Q − k , α = 1

max
k

`k−µk

µk

.

The g1(k) is simply the eigenvalues normalized to sum to 1.
It can be interpreted as the probability mass function defined
on the last (Q−1) eigenvalues. The ξk in g2(k) measures the
relative variation between the k-th eigenvalue and its expected
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f(p,m,B) =max{min{p, MT

p
} ,min{m

p
,pBT} ,min{B,mT} ,min{T,M} ,min{m,BT} ,min{pB, mT

p
} ,min{pT, M

p
}} .

(6)

value under the null hypothesis (noise only). The smaller the
variation is, the larger ξk is. The g2(k) is the scaled version
of ξk and sums to 1 to imitate the probability mass function
defined on the first (Q − 1) eigenvalues.

The solution K̂ is obtained as k which yields the last
positive value of (9).

IV. SIMULATION RESULTS

We evaluate the performance of the following approaches
for sparsity order estimation: AIC, MDL [16], efficient de-
tection criterion (EDC) [21], RMT [8], empirical eigenvalue-
threshold test (EET) [11] and DFBM [7].

The signals are generated according to model (4). The
entries of a non-Vandermonde factor matrix are i.i.d. drawn
from zero-mean circularly symmetric complex Gaussian (ZM-
CSCG) distribution with variance 1. The Vandermonde factor
matrices are extracted from an N ×N discrete Fourier trans-
form matrix. The i.i.d. ZMCSCG noise with variance σ2 is
added to (1) and is rearranged in matrix form as described
in Section II. The signal-to-noise ratio (SNR) is defined
as SNR = ∑T

t=1∥y(t)∥
2

MTσ2 . The noise variance σ2 is scaled to
obtain different SNRs. For each SNR, 100 independent Monte
Carlo runs have been conducted. The performance measure is
the probability of correct detection (PoD), i.e. Pr (K̂ =K),
averaged over signal and noise realizations.

The dimension of the original and observed data are re-
spectively N = 105 and M = 1024. A small snapshot-number
scenario T = 2 and a large snapshot-number scenario T = 200
are considered. The block length m, block advance p and
number of blocks B are set according to (7) and (8).

A. Small Snapshot-Number Scenario

Fig. 1 presents the PoD versus SNR at T = 2, where the
size parameters are described in the figure caption. The AIC,
MDL and EDC totally fail due to severe overestimation of
the sparsity order. The RMT also fails since it overestimates
the sparsity order for a false alarm rate of 0.01. The ETT
performs the best when SNR< 30 dB. However, it can only
achieve a PoD around 75% in high SNR regimes due to
overestimation of the sparsity order. By contrast, the DFBM
method consistently improves in PoD with increasing SNR,
and achieves a PoD of 100% in high SNR regimes.

From Fig. 2, we see at an SNR of 45 dB the DFBM is able
to accurately detect the sparsity order up to 100 (although it
fails for K = 1 due to overestimation of the sparsity order)
while the ETT can only detect up to 10 signals. Note that for
a higher sparsity order, although the DFBM and ETT fail to
detect the exact sparsity order, their estimated sparsity order
are relatively very close to the true one (not shown here due
to space limit).

Fig. 1. PoD versus SNR, N = 105, M = 1024, T = 2. Block length:
m = 683, block advance: p = 1, number of blocks: B = 342. True sparsity
order: K = 5

Fig. 2. PoD versus sparsity order K at SNR=45 dB. The size parameters are
the same as in Fig. 1

B. Large Snapshot-Number Scenario

In Fig. 3, we increase the number of snapshots to T = 200.
The AIC, MDL and EDC again totally fail due to severe
overestimation of the sparsity order. The RMT shows the best
performance, and is able to detect up to 500 signals, as shown
in Fig. 4. Moreover, for a higher sparsity order, although the
RMT fails to detect the exact sparsity order, its estimated
sparsity order is centered around the true one (not shown
here). Similar observations are obtained for the DFBM and
ETT algorithms.
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Fig. 3. PoD versus SNR, N = 105, M = 1024, T = 200. Block length:
m = 1019, block advance: p = 1, number of blocks: B = 6. True sparsity
order: K = 5

Fig. 4. PoD versus sparsity order K at SNR=45 dB. The size parameters are
the same as in Fig. 3

V. CONCLUSION

The sparsity structure in data is a crucial information to
allow a drastic reduction on data storage and communication in
big data applications. The authors in [6] have recently shown
that if the data possesses a sparse representation in a suitable
domain, one can estimate the sparsity order directly from the
compressed data obtained by using a Khatri-Rao structured
measurement matrix for compressed sensing. The structure
of the measurement matrix allows to rearrange the multiple-
snapshot observation vectors into a fourth-order tensor. In this
paper, we show how to employ the rich multilinear structure in
the observed data to increase the identifiability (i.e, the largest
sparsity order that can be inferred from a limited number of
observations) and to improve the performance of sparsity order
estimation.
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