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Abstract—Palmprint based identification has attracted much
attention in the past decades. In some real-life applications,
portable personal authentication systems with high accuracy and
speed efficiency are required. This paper presents an embedded
palmprint recognition solution based on the multispectral image
modality. We first develop an effective recognition algorithm by
using partial least squares regression, then a FPGA prototype
is implemented and optimized through high-level synthesis tech-
nique. The evaluation experiments demonstrate that the proposed
system can achieve a higher recognition rate at a lower running
cost comparing to the reference implementations.

I. INTRODUCTION

In the past decades, the personal authentication applications
greatly benefited from the biometric technology for its advan-
tages of convenience and accuracy. A series of biometric traits
have been utilized and evaluated, such as face, fingerprint, iris,
palmprint, finger-knuckle-print, hand geometry, etc. Palmprint
is considered as a reliable biometric feature with high usability.
It can greatly improve the performances of authentication
systems, such as running speed, user friendliness, low cost,
accuracy, etc [1]. Meanwhile, since the tissue of palm skin
has different absorption capacity to different wavelengths of
light and multispectral images capture more precisely these
information, each band of multispectral images represents
particular features of a plam. That allows to obtain multifarious
information to improve the distinguishability of palmprint
image features.

Recently, aimed at different processing cycles, including
preprocessing, feature extraction, matching and decision cy-
cles, many palmprint based multispectral biometric solutions
have been developed. For example, within the feature extrac-
tion, Xu and Guo [2] represents the multispectral palmprint
images as quaternion features extracted through the quaternion
principal components analysis, and achieve better performance
in recognition applications. Xu et al. [3] improve the multi-
spectral palmprint recognition method in the feature extraction
and matching cycles by using digital shearlet transform and
multiclass projection extreme learning machine. Hong et al.
[4] develop a hierarchical approach for multispectral palmprint
recognition by fusing the block dominant orientation code and
block-based histogram of oriented gradient features extracted
from different light bands. According to the reported experi-
ment data obtained within the laboratory environment, today’s
multispectral palmprint biometric algorithms have been able to
provide high accuracy performance: average recognition rates

of 99.9% for the IITD palm database [5] and 99.56% for the
PolyU multispectral palmprint database [3].

In practical, finding a person of interest from a large can-
didate database is far from easy. It usually requires a high per-
formance hardware platform to manage the candidate database
and/or ensure the execution speed of the system. Furthermore,
in some real-life applications, i.e. access control or e-banking,
the authentication process needs to be made in a terminal
equipment with real-time abilities due to the requirements
about information security and application environment. For
these issues, Zhang et al. [1] propose a low-cost multispectral
palmprint system that can operate in real time and acquire
high-quality images. It provides a high recognition accuracy by
fusing the multispectral information at score level. However,
the hardware device of this system is based on the CPUs
without embeddability. Kumar and Shekhar [6] successfully
prototype a multimodal palm biometric system into an Altera
DE2-115 board from Terasic, but it achieves only an EER of
16.65% and a verification speed of 0.8 seconds per image,
which can hardly satisfy the accuracy performance or real-
time requirement of the real-life applications. Consequently,
finding an embedded solution for high accuracy multispectral
palmprint biometric is still an open challenge and motivates
the work of this paper as well.

Our work consists of three cycles: algorithm design, RTL
(Register-Transfer Level) implementation and performance
optimization. We first propose a new multispectral palm-
print recognition algorithm. In the multispectral image based
biometric technique, the information presented by multiple
biometric measures need to be consolidated to perform a
final decision by using the data fusion technique [7]. Usually,
there are four levels of fusion in the multispectral biometric
methods: image/pixel level, feature level, matching score level
and decision level. We chose the score level fusion technique
for its benefits shown in the research of Zhang et al. [1].
That is, the dissimilarities of the band maps of the input
multispectral images are measured first within their own bands,
and then the results are fused in the score level. Meanwhile,
a partial least square regression based classifier is used for
matching calculation. This regression method can effectively
improve the test accuracy by modeling the relations between
training and desired response matrices, as well as handle the
classification problems. Further more, the regression model of
this method is intrinsically a matrix multiplication operation,
which is very fit for embedded systems.

Since conventional FPGA design flow cannot provide a
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software-friendly environment for the algorithm development
and verification, we implement the design through a High-
Level Synthesis (HLS) SW/HW co-design flow [8]. This
techinique can effectively accelerate the design cycles by
automate the C-to-RTL synthesis, even for the users with fewer
register-transfer language programming experiences, as well as
improve the maintainability of the design by facilitating the
algorithm description. Furthermore, a series of optimizations
are made in the code level to improve the design performances.

Finally, the proposed solution is evaluated using the Re-
gion Of Interest (ROI) version of the PolyU multispectral
palmprint database [9]. The experiment results demonstrate
a very high recognition rate, nearly 100%. Meanwhile, the
proposed hardware implementation and optimization can ef-
fectively accelerate the processing efficiency. The final im-
plementation achieves a recognition speed of 1.37 frames
per millisecond (with a multispectral image resized into 13-
by-13 and including normalization, feature matching, score
fusion and decision), which allows to perform more complex
pre- and post- processing in real-time, such as hand image
segmentation, gesture analysis, hand language interpretation,
etc..

The remainder of this paper is organized as follows: Section
2 describes the proposed palmprint recognition algorithm;
Section 3 presents the implementation and optimization cycles;
Section 4 analyzes the experiment results; finally, a conclusion
is given in Section 5.

II. ALGORITHM DESCRIPTION

Fig. 1 shows the overall flowchart of the implemented
palmprint recognition algorithm. Usually, the multispectral
images are organised as multispectral cube arrays denoted by
Ci ∈ RH×W×B with 1 ≤ i ≤ N , where H and W refer
to the height and width of the images respectively, B is the
band number and N is the number of multispectral palmprint
images (known also as observed samples). Therefore the first
step of the design is to reshape the set of multispectral image
arrays into the form of X ∈ RN×D×B with D = H ×W .
Let Xb ∈ RN×D be the b-th frame of X in the B direction,
so the rows and columns of Xb respectively correspond to
the samples and vectorized reflectance map (feature variable
vector) within the b-th band.

PLS based classifications necessitate either a testing or a
training data set. In the second step, every sub matrix Xb

is treated as a testing matrix of PLS and assigned to the
concerned matching channel. Since the proposed algorithm
consists of multiple independent regression models, we define
the combination of each regression model and its pre-process
cycle as a matching channel. Within each channel, the testing
matrix Xb is first normalised: X̄b = (Xb − µb)/σb, where
X̄b ∈ RN×D is the normalized testing matrix in the b-th band,
µb and σb are the mean and standard deviation of the training
matrix Xtrain.b. Then, the matching score matrix of the b-th
band, Ŷb ∈ RN×Nr , can be obtained by multiplying X̄b by its
PLS regression coefficients θb ∈ RD×Nr : Ŷb = X̄b × θb. Ŷb
is a N -by-Nr matrix, in which Nr is the number of classes
(palm candidates). In our case, the element of the matching
score matrix, yb(i, j), is expected to be 1 when the i-th input
sample matches with the j-th candidate palm, otherwise 0.

Algorithm 1 Pseudocode of PLS regression algorithm
Input: training matrix X̄train.b, target outputs Ȳr , principal component

number k
Output: regression coefficients θb
1: initialization
2: for i = 1, 2, . . . , k do
3: ui ← first column of X̄T

train.bȲr
4: ui ← ui/||ui||
5: repeat
6: ui ← X̄T

train.b iȲrȲ
T
r X̄train.b iui

7: ui ← ui/||ui||
8: until convergence
9: pi ← X̄T

train.b iX̄train.b iui/(u
T
i X̄

T
train.b iX̄train.b iui)

10: ci ← Ȳ T
r X̄train.b iui/(u

T
i X̄

T
train.b iX̄train.b iui)

11: X̄train.b i+1 ← X̄train.b i(I − uipTi )

12: end for
13: θb = u(pTu)−1cT

The regression coefficient θb is obtained by using the
Partial Least Squares (PLS) approach [10]. PLS regression
is a machine learning algorithm that uses the covariance to
guide the selection of features before performing least-squares
regression. To maximize the covariance between the training
input Xtrain.b and desired matching score matrix Yr, we first
compute their normalization matrices X̄train.b and Ȳr, then the
largest singular value of X̄T

train.bȲr is computed by using an
iterative method proposed in [10], which repeats a sequence
of steps shown in Algorithm 1. In this algorithm, k is the
number of principal component. This iterative process results
in ui converging to the first right singular vector of X̄T

train.bȲr
and returns the regression coefficients.

After dissimilarity measurement, the matching score ma-
trices of each channel Ŷb are fused: Ŷ =

∑B
b=1 Ŷb, and finally

the maximum element of each row of the fused matching score
matrix, Ŷ , is used to perform the decision vector.

III. IMPLEMENTATION AND OPTIMIZATION

This work implements a 1-to-1000 (N = 1 and Nr =
1000) palmprint identification design for the PolyU multispec-
tral palmprint database, which covers red, green, blue and
Near-Infrared (NIR) bands. Algorithm 2 shows the pseudocode
of the implemented algorithm. In this original version, PLS
regression model and decision function (Line 14-17 and 21)
are packaged into the sub functions to add to its readability.
The algorithm behavior is first described by using C language,
then synthesized into register-transfer level automatically with
the help of Vivado HLS (formerly AutoPilot from AutoESL),
which is a leading HLS tool [11].

Despite of many benefits in terms of complexity, main-
tainability, development productivity, etc., it exists still a
significant performance gap between HLS-based and manual
register-transfer level implementations for complex applica-
tions in terms of time control, execution speed, consumption,
etc. [12][13]. Consequently, we made a series of code-level
optimizations to improve the performance of the original
implementation. The optimization forms used include function
inline, loop manipulation, pipeline and symbol expression
manipulation.
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Fig. 1. Overall flowchart of the proposed algorithm.

Algorithm 2 Pseudocode of the original algorithm behavior
Input: multispectral cube X , regression coefficients θ
Output: decision Yp
1: initialization
2: for all the feature values of the red band do
3: X̄red(k)← (Xred(k)− µb)/σb
4: end for
5: for all the feature values of the green band do
6: X̄green(k)← (Xgreen(k)− µb)/σb
7: end for
8: for all the feature values of the blue band do
9: X̄blue ← (k)← (Xblue(k)− µb)/σb

10: end for
11: for all the feature values of the NIR band do
12: X̄NIR ← (k)← (XNIR(k)− µb)/σb
13: end for
14: Ŷred ← plsreg model(X̄red, θred)

15: Ŷgreen ← plsreg model(X̄green, θgreen)

16: Ŷblue ← plsreg model(X̄blue, θblue)

17: ŶNIR ← plsreg model(X̄NIR, θNIR)

18: for all the elements of Ŷ do
19: Ŷ (i)←

∑B
b=1 Ŷb(i)

20: end for
21: Yp ← decision func(Ŷ )

In order to manipulate the loops in different function levels,
the function hierarchy is first flattened. This transformation
enables logic optimization across function boundaries and
improve latency/interval by reducing function call overhead.
Next, we manipulate the loops of the source code by using
loop fusion and unrolling. HLS abstracts the input source code
as a control and datapath flow graph, in which a sequence of
successive operations is processed as a control step. Fig. 2-
(a) shows the diagram of the control flow extracted from the
function inline version of the proposed algorithm. In order to
reduce the state and transit number, the loops of normalization
computations (Lines 2, 5, 8 and 11) and loops containing in the
PLS regression models (Line 14,15,16 and 17) are fused into
a single one respectively due to the same loop boundary and
independent bodies (Fig. 2-(b)). Furthermore, the initialization
operations in S11 is moved to the beginning of the input code

Algorithm 3 Pseudocode of the optimized algorithm behavior
Input: multispectral cube X , regression coefficients θ
Output: decision Yp
1: initialization
2: for all the feature values of all the bands do
3: #pragma AP pipeline II=5
4: X̄red(k)← (Xred(k)− µb)/σb
5: X̄green(k)← (Xgreen(k)− µb)/σb
6: X̄blue(k)← (Xblue(k)− µb)/σb
7: X̄NIR(k)← (XNIR(k)− µb)/σb
8: end for
9: for the i-th element of Ŷ do

10: #pragma AP pipeline II=86
11: Ŷred(i)← X̄red ∗ θred(i)

12: Ŷgreen(i)← X̄green ∗ θgreen(i)

13: Ŷblue(i)← X̄blue ∗ θblue(i)

14: ŶNIR(i)← X̄NIR ∗ θNIR(i)

15: tmp1← Ŷred + Ŷgreen, tmp2← Ŷblue + ŶNIR

16: Ŷ (i)← tmp1 + tmp2

17: if Ŷ (i− 1) < Ŷ (i) then
18: Yp ← i

19: end if
20: end for

and fused into the initialization step S0. Finally, the loop
of S2 in Fig. 2-(b) is unrolled completely to parallelize its
iterations (see Fig. 2-(c)). In our case, the transformation of
loop manipulation can reduce the hardware consumption of
logical control and add to the instruction level parallelism by
centering the operations into a single control step.

The pseudocode of the optimized implementation is shown
in Algorithm 3, in which two optimization directives (#pragma
AP pipeline) are placed under the loops to perform iteration
pipeline optimization. The factor II is used to specify the
desired initiation interval for the pipeline. Additionally, the
expression of score level fusion (Line 19 in Algorithm 2) is
segmented into short expressions (Line 15 and 16 in Algorith-
m 3). This transformation can enhance the detection ability of
HLS tools in terms of Instruction-Level Parallelism.
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Fig. 2. Diagram of the finite state machine extracted from the proposed
algorithm: S∗ is the state identification, L∗ is the line number of the operations
in Algorithm 2, and fmul, fadd, cmp, r and w are the multiplication,
addition, comparison, reading and writing operators.

TABLE I. COMPARISON OF RECOGNITION RATE.

Methods Bands Sample number
(train vs. test)

Average recognition
rate

MPELM [3] NIR+red 1 vs. 11 97.33%
NIR+red 3 vs. 9 99.56%

QPCA [2] All 6 vs. 6 98.13%
Proposed NIR+green 1 vs. 6 98.23%

All 1 vs. 6 99.96%

IV. EXPERIMENTS

This section presents the evaluation experiments of the
proposed algorithm and its FPGA implementations. The ROI
version of the PolyU multispectral palmprint database provided
by Hong Kong Polytechnic University [1] is used for tests.
This database is collected from 250 volunteers (250×2 = 500
palms), including 195 males and 55 females, and captured
with NIR and visible light (red, green and blue color). All
the images are divided into two sessions, whose average time
interval was about 9 days. For each session, 6 samples are
acquired, so we have 6×2×500 = 6, 000 samples of 128×128
pixels in total.

Our experiments consist of accuracy and efficiency perfor-
mance evaluations. For the accuracy evaluation, the recognition
rate is used as metric, and the test is made with the smallest
training set. The training set is created by choosing a single
sample from the six samples of one session at random, then
the other session for testing. The experiment is repeated 10
times in order to obtain an unbias result, in which the two
sessions are used for training and testing alternately.

Table I compares the recognition accuracy of the proposed
method with other two reference implementations, which are
based on the Multiclass Projection Extreme Learning Machine
(MPELM) [3] and Quaternion Principal Component Analysis
(QPCA) [2]. We can see that our method can provide a similar

TABLE II. HARDWARE CONSUMPTION COMPARISON.

Components BRAM DSP FF LUT
Expression - - 0 2877
Instance - 40 3132 3638
Memory 16 - 0 0
Multiplexer - - - 13300
Register - - 26197 -
ShiftMemory - - 0 16846
Total 16 40 29329 36661
Utilization(%) 5 31 65 81

accuracy performance compared to the other methods by using
only two bands and a single sample for training. When all the
four bands are applied, a very high recognition rate, nearly
100%, is achieved. It can be seen also that the case of MPELM
[3] uses a larger test set than ours by mixing the two sessions.
Considering that using the samples from the same session can
facilitate the identity authentication problem, we conclude that
our algorithm provides the best accuracy performance within
the most challenging conditions.

The running speed performance of the design is evaluated
using the device xc5vfx70tff1136-1 of Xilinx with a clock
cycle period of 8.34 ns, which is estimated by Vivado HLS.
Our experiment demonstrates that the original version of the
proposed implementation achieves a running speed around
1.58 × 10−2 seconds, and the running time of the optimized
version is 7.3 × 10−4 seconds, accelerating the design by
21.67×.

Finally, Tab. II presents the consumption of different com-
ponents of the optimized implementation. Comparing to the
original version, its average hardware utilization rate increases
by around 5.88×, which is much lower than the acceleration
ratio. That demonstrates that the applied optimization approach
can effectively improve the implementation performance by
using the additional area of the target device, and provide a
high efficiency-area ratio. In additional, our implementation re-
quires an external memory to save the test data and regression
coefficients. For a N -to-Nr system, its size can be estimated
as follow: (N +Nr)×D× S, where D is the number of the
feature variables, and S is the size of data type.

V. CONCLUSION

This paper presents an embedded solution for real-time
palmprint recognition applications. We first developed a new
PLS regression based palmprint authentication algorithm, then
implement it in FPGA with a series of optimizations. Exper-
iments demonstrate that this embedded solution can provide
a very high recognition accuracy as well as a high efficiency
performance. Further more, comparing to the solutions based
on the platforms of other types, i.e. the palmprint verification
system specially designed for real-time applications by Zhang
et al. [1] using C++ language in a PC with T6400CPU (2.13
GHz) and 2-GB RAM, our approach achieves a much higher
running speed (1.5 vs. 7.3 × 10−4 seconds). In the future
work, we will further improve our solution by transplanting
the training cycle of the proposed algorithm into the FPGAs
and making more simulations and evaluations in deep in order
to realize an autonomous, adaptative and portable biometric
system.
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