
CHARACTERIZING ABSENCE EPILEPTIC SEIZURES FROM DEPTH CORTICAL
MEASUREMENTS

S. Akhavan1,2 R. Phlypo1 H. Soltanian-Zadeh2,3 F. Studer4 A. Depaulis4 C. Jutten1,5

1GIPSA-LAB, University Grenoble-Alpes, Grenoble, France. 2University of Tehran, Tehran, Iran.
3Medical Image Analysis Lab., Henry Ford Health System, Detroit, MI, USA.

4INSERM U1216, Grenoble Institut des Neurosciences, Grenoble, France.
5Institut Universitaire de France, Paris, France.

ABSTRACT
In this paper, we are going to localize the onset regions and
investigate the dynamics of absence epileptic seizures using
local field potential recording by depth electrode. We assume
that there are some hidden states (under Markovian model)
during the seizure and each spike of the seizure is generated
when one of the states is activated. Each state is considered as
the linear superposition of a few epileptic activities (substates)
and each epileptic activity is described by two characteristics:
1) the spatial topography and 2) the temporal representation.
Experimental results demonstrate the generality of the pro-
posed model in characterizing absence epileptic seizures.

Index Terms— Absence seizure, state, substate, spike

1. INTRODUCTION

Absence epilepsy is one of the several kinds of epilepsy. Sud-
den emergence of seizures associated with spike discharges
on electroencephalogram (EEG) signals of the patients, is in-
dication of this syndrome. Some of the people suffering from
absence epilepsy have drug resistance epilepsy. For this rea-
son, researchers try to better understand the generation pro-
cess of absence epileptic seizures using animal models.

Localizing the origin of absence epileptic seizures (spa-
tial analysis) and investigating the dynamics of them (tem-
poral analysis) have been challenging problems over the past
decades [1–5].

As one of the major works in spatial analysis, [1] studies
the non-linear associations between signals recorded from
multiple zones of the cortex and thalamus in the WAG/Rij rat
model of absence epilepsy. They reported that during the first
cycles of the seizure one region of the cortex (somatosensory
cortex) drives the thalamus, while thereafter cortex and thala-
mus mutually drive each other. Existence of a cortical starter
has also been recognized in Genetic Absence Epilepsy Rat
from Strasbourg (GAERS), another well-validated animal
model for absence epilepsy [4]. Many researchers wonder
if absence epilepsy is truly sudden generalized synchronous

activity with immediate global cortical involvement [1–3].
In [5], the challenge is about the temporal dynamics of

brain activities during a seizure. At first, source separation
methods were applied on temporal sliding windows of data
and the relevant temporal sources were estimated for each
window. Then, the temporal sources were compared quan-
titatively, giving a map of dynamic behavior. By analyzing
this map, it has been shown that the temporal relevant sources
become more stable after a latency from onset of seizures.
The dynamic analysis of absence seizures also has been done
in humans. In [3], it has been reported that the cortical acti-
vations and deactivations tend to occur earlier than thalamic
responses during absence epileptic seizures.

In order to attain better spatio-temporal analysis of ab-
sence epileptic seizures, a new data set was acquired at the
Grenoble Institute of Neurosciences (GIN) from different
layers of somatosensory cortex (the onset region of absence
epilepsy) in GAERS. Our goals are to 1) model the dynamics
of seizures (temporal analysis) and 2) estimate onset layers
during seizures (spatial analysis).

To achieve our goals, we assume that there are some
hidden states (under Markovian model) during the seizures
and each spike is generated condition on that the state is
activated. Each state consists of a few typical epileptic activ-
ities. We call each of these activities as one substate. Each
substate is described with two important characteristics: the
first one is spatial topography which shows the interaction of
the sources and sinks in the different layers of cortex for that
substate and the second one is temporal representation which
shows the shape of the spike for that substate. Extraction of
the explained states and their substates and validation of the
proposed model is the main target of this paper.

2. MATERIALS

2.1. Data

Extracellular field potential was recorded from different lay-
ers of somatosensory cortex of 4 adult GAERS rats by means
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of one electrode with E =16 sensors. The sampling rate was
fs = 20 KHz and the distance between each pair of adjacent
sensors was 150µm (Fig. 1).

Fig. 1. Recording electrode (left), one seizure (center) and one
spike matrix (right).

2.2. Model For Absence Seizures

Since spikes are the most important epileptic events during
seizures, we are going to analyze the seizures based on spikes.
As shown in Fig. 1, approximate simultaneous appearance of
spikes in different channels during the seizure is the most typ-
ical characteristic of this data due to volume conduction the-
ory. In other words, when one spike appears in one channel,
we have one matrix of spikes (spike matrix). Therefore, we
can consider each seizure as a train of spikes (spike matrices).

Model for Generation of Train of Spikes: We assume,
there are a few hidden states (R) during seizure and each spike
is generated when the corresponding state is activated. This
assumption is based on pseudo periodic behavior of spikes
and similarity of them during seizures. To model the dynamic
of the activation of these states, we also assume there is a
Markovian model with fixed transition probability matrix P
(∈ IRR×R) in activation of the states.

Model for Generation of One Spike: We assume that
each spike is generated by a linear combination of a few
epileptic activities. Linearity is a logical assumption since
we are going to process local field potentials which are low
frequencies part of the data and there is not any effect of
capacity or induction. So there is no building up of charges
and we can directly measure the fields. Mathematically, if we
consider rank one decomposition of one spike matrix (Xi) as
follows (e.g. singular value decomposition):

Xi =
N∑
j=1

cij ajb
T
j (1)

We can assume that Xi has been generated by linear su-
perposition ofN different substates and we can consider each
substate as one epileptic activity. cij , aj and bj respectively
show the contribution of jth substate in generation of Xi, the

spatial topography and temporal representation of jth sub-
state. The main advantage of this decomposition is that aj can
be interpreted using current source density (CSD) concept [6]
and clarifies the interaction between different layers in each
substate. Also, bj informs us about the shape of the spike in
each substate. In fact, we assume that each explained state in
previous part, consists of a few substates (N ) and when one
state is activated, the linear combination of its substates will
generate the corresponding spike matrix.

Fig. 2. Considered model for generation of spike matrices.

2.3. Problem Formulation

If we stack all of the spike matrices of one seizure in one three
dimensional tensor T (∈ IRE×T×K), the desired decomposi-
tion for T is as follows:

T '
R∑

s=1

N∑
j=1

a
(s)
j ⊗ b

(s)
j ⊗ c

(s)
j (2)

where E, T,K are respectively number of channels, samples
of each spike and spike matrices. ⊗ denotes the tensor prod-
uct. a

(s)
j (∈ IRE×1) and b

(s)
j (∈ IRT×1) respectively show

the spatial topography and temporal representation of jth sub-
state from sth state. c

(s)
j (∈ IRK×1) shows the contribution

of different substates in generation of spike matrices. Fig. 2
shows the desired decomposition by consideringR = N = 2.
For having fair comparison between different substates, we
assume that a(s)

j and b
(s)
j are unit norm vectors and entries of

c
(s)
j are considered positive because we want to have the same

polarization for a(s)
j and b

(s)
j in all of the spike matrices. The

set of unknown parameters is as follow:

Θ = {A(1),B(1),C(1), ... , A(R),B(R),C(R),P} (3)

where A(s) = [a
(s)
1 a

(s)
2 ... a

(s)
N ], B(s) = [b

(s)
1 b

(s)
2 ...

b
(s)
N ], C(s) = [c

(s)
1 c

(s)
2 ... c

(s)
N ] and [C(s)]ij = c

(s)
ij . The

set of unknown parameters also can be shown shortly by,

Θ = {A,B,C,P, σ2
0} (4)
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where A = [A(1)...A(R)], B = [B(1)...B(R)] and C =
[C(1)...C(R)]. Now, the model definition and problem state-
ment is complete and the target is finding the hidden states,
their substates and the transition probability matrix which will
be explained in one framework.

3. PROPOSED FRAMEWORK

The whole procedure of the proposed framework for extract-
ing the unknown parameters of the considered model is shown
in Fig. 3. As shown there are three main stages in this frame-
work, pre-processing, proposed method and cross validation
which are explained in the following.

Fig. 3. Block diagram of the proposed framework. LFP and
CSD respectively stand for local field potential and current
source density.

3.1. Pre-Processing

The signal of each channel is filtered by a fifth-order low pass
Butterworth filter with cutoff frequency equal to 100 Hz to ex-
tract the Local Field Potential (LFP) [6]. Then, the obtained
signals are converted to current source density (CSD) using
one linear transformation proposed in [7]. We are going to
investigate seizures, so we must separate the seizures from
the data. Since the amplitude of the signal changes signifi-
cantly at the beginning and end of the seizures, we separate
the seizures from the data by simple thresholding. Once the
seizures were separated from the data, we detect the spikes
using thresholding, following the proposed method in [8] and
construct the spike matrices (T = 1750 samples).

Finally, we align the spike matrices using improved ver-
sion of Woody’s method proposed in [9] and stack them in
3-way data tensor T with dimensions E × T × K (Fig. 2).
Now, the data is prepared for extracting the states, substates
and the transition probability matrix.

3.2. Proposed Method

Since we do not have any prior information about the number
of states (R) and substates (N ), at first we should fix them
and extract the unknown parameters. we should consider that
we are looking for logical results which have the best bio-
physiological interpretation. So, we first extract the unknown

parameters for different R and N , then we select that repre-
sentation which has the best bio-physiological interpretation.
We consider three assumptions in activation of states and gen-
eration of spike matrices:

1- The (i+ 1)
th state is only depending on the ith state

(first-order Markovian model).
2- Each spike matrix (Xi) is generated through additive

white Gaussian noise channel, i.e,

Hs
(i) : Xi =

N∑
j=1

c
(s)
ij a

(s)
j b

(s)
j

T
+ Ni (5)

where Hs
(i) (s = 1, 2, ..., R) means if state s were active

for generating ith spike matrix. Ni is additive white Gaussian
noise with independent entries and each entry of this matrix
has normal distribution with zero mean and unknown variance
σ2

0 (in fact Θ = {A,B,C,P, σ2
0}). So, we have:

f(Xi|Hs
(i),Θ) =

(
1√

2πσ2
0

)E×T exp(−
‖Xi −

∑N
j=1 c

(s)
ij a

(s)
j b

(s)
j

T
‖2F

2σ2
0

) (6)

Considering these assumptions, we use maximum likeli-
hood estimator (MLE) to find the set of unknown parameters,
i.e.,

Θ∗ = argmax
Θ

f(T |Θ) (7)

and we have:

f(T |Θ) =
K∏
i=1

f(Xi|Θ) =
K∏
i=1

R∑
s=1

p(Hs
(i))f(Xi|Hs

(i),Θ)

(8)

where p(Hs
(i)) is the probability of activation of sth state

in generation of ith spike matrix. Since p(Hs
(i)) is unknown,

and it operates like a mathematical expectation, we solve this
optimization problem using Expectation Maximization (EM)
method. The procedure of solving this optimization problem
is very similar to hidden Markov models introduced in [10].
The final set of unknown parameters are extracted by per-
forming a few iterations between E-step and M-step. The
transition probability matrix (P) is also determined in this
procedure using p(Hs

(i)).
Although we found the parameters, we still must deter-

mine the sequence of states and assign each spike matrix to
one state. For this purpose, since we have found all char-
acteristics of the states, the sequence of states can be easily
determined using Viterbi algorithm [10]. After determination
of the sequence of states, we must apply one minor modifica-
tion on matrix C. In each row of C, we should have just non
zero entries for one single state. So, regarding the obtained
sequence of states by Viterbi algorithm, we keep the entries
of corresponding activated state (substates) and make other
entries equal to zero. Now the set of unknown parameters Θ
is determined.
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3.3. Cross Validation

To generalize the considered model, we should check the
compatibility of the proposed model and its parameters for
different seizures. For this purpose, as shown in block dia-
gram of the proposed framework (Fig. 3), we split the data
into two groups of training set and testing set in order to
validate the extracted results. So, following leave-one-out
cross validation approach, we split T into Ttrain and Ttest.
Ttrain consists of spike matrices of only one seizure and
Ttest = {T (1)

test, T
(2)
test, ..., T

(M)
test } consists of spike matrices of

M seizures.
Training Phase: We apply the proposed method on

Ttrain and extract the set of parameters (Θ∗). In order to
show that the considered model is adapted to the training
data, we should have good reconstruction using extracted pa-
rameters. It means the following normalized reconstruction
error must be small:

Errortrain =
‖Ttrain −

∑R
s=1

∑N
j=1 a

(s)
j

∗
⊗ b

(s)
j

∗
⊗ c

(s)
j

∗
‖2F

‖Ttrain‖2F
(9)

In fact, we should check this error to see whether the consid-
ered model is basically correct model or not.

Testing Phase: Now, the set of model parameters {A∗train,
B∗train,P

∗
train, σ2

0
∗
train} is determined and we want to check

if these parameters are adapted to unseen testing data or not.
For this purpose, we perform the following steps for each
T (m)
test (m = 1, 2, ...,M) in the testing set:

1- Since all of the parameters of model except C are
known, we extract the sequence of states using Viterbi algo-
rithm.

2- Once the sequence of states is determined, we project
each spike matrix on the corresponding state (substates) and
find Ĉtest. Positivity of the coefficients must also be consid-
ered in this decomposition.

3- Finally, to show that the considered model is also
adapted to the testing data, we must have good reconstruction
using known parameters (A∗train,B

∗
train) and extracted pa-

rameter (Ĉtest), i.e, the following normalized reconstruction
error must be small:

Error
(m)
test =

‖T (m)
test −

∑R
s=1

∑N
j=1 a

(s)
j

∗
⊗ b

(s)
j

∗
⊗ ĉ

(s)
j ‖2F

‖T (m)
test ‖2F

(10)
In fact we should check this error to see whether the con-

sidered model is adapted to unseen data or not.

4. EXPERIMENTAL RESULTS

As discussed before, since we did not have any information
about the number of states (R) and substates (N ), we applied
the proposed method on the data with differentR andN , then

we selected the best model order by considering these two
points:

1- According to (9) and (10), we should have small nor-
malized recontruction error. This condition is not enough be-
cause if we increase R and N , naturally the reconstruction
error will be decreased.

2- The chosen substates must have a bio-physiological in-
terpretation (e.g. shape of the spike must be smooth).

Considering these two points, the best results were ob-
tained using two states (R = 2) and two substates (N = 2).
The spatial topography and temporal representation of the ex-
tracted substates are shown in Fig. 4. The extracted parame-
ters were approximately the same for all of the seizures. The
obtained noise variance is σ2

0
∗ ' 1 and the extracted transi-

tion probability matrix is as follows:

P =

[
P (S1|S1) P (S2|S1)
P (S1|S2) P (S2|S2)

]
=

[
0.01 0.99
0.26 0.74

]
(11)

Fig. 4. Final spatial topography and temporal representation
of the states and substates.

For 5 seizures from the same rat, the reconstruction errors
are reported in Table 1.

Table 1. Reconstruction error for 5 different seizures from the
same rat for N = R = 2. The seizures respectively consist
of K1 = 87, K2 = 390, K3 = 94, K4 = 95 and K5 = 88
spikes. The diagonal and non-diagonal entries of the table
respectively show Errortrain and Errortest.

Training on \Testing on T1 T2 T3 T4 T5
T1 0.06 0.09 0.14 0.13 0.13
T2 0.08 0.05 0.11 0.10 0.11
T3 0.10 0.10 0.07 0.11 0.12
T4 0.12 0.11 0.12 0.09 0.10
T5 0.11 0.10 0.12 0.13 0.07
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These results show the accuracy and generality of the pro-
posed model in generation of spike matrices during absence
epileptic seizures. After determination of the model parame-
ters, the sequence of states for different seizures was extracted
using Viterbi algorithm. The obtained sequence for the sec-
ond seizure is shown in Fig. 5.

Fig. 5. Sequence of states for the second seizure.

To see behavior of the spike matrices and their corre-
sponding states during this seizure, the spike matrices and
their states during the marked region (on Fig. 5) are shown in
Fig. 6.

Fig. 6. Spike matrices and their states during the second
seizure in region 1 (see Fig. 5).

5. CONCLUSION

Based on the obtained results, we can conclude that the first
state is not at all stable because P (S1|S1) is very small (tem-
poral analysis). According to Fig. 4, the most interesting
point is that the first substate of the both of states are the
same. So we can upgrade our model. We can say there is
one background activity during the seizure and there are two
states (with one substate in each one) which are activated dur-
ing seizures under Markovian model (temporal analysis).

In the new model, for background activity (or the first
substate of previous model), there is an interaction circuit be-
tween layer 2/3 and layer 6 (based on extracted CSD in Fig.
4). In the first state, there is an interaction circuit between
layer 6 and layer 2/3 while in the second state, there is an in-
teraction circuit between layer 1 and layer 5 (spatial analysis).
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