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Abstract—Patch-based image denoising can be interpreted under the
Bayesian framework which incorporates the image formation model and
a prior image distribution. In the sparsity approach, the prior is often
assumed to obey an arbitrarily chosen distribution. Our motivation is to
estimate the probability directly from the distribution of image patches
extracted from good quality images, thanks to a given dictionary and
the redundancy of information between many images. In this paper,
we provide a scheme to estimate the probability distribution and also
an optimized algorithm for denoising. We demonstrate that using the
estimated probability distribution as the image prior is more efficient
than the state-of-the-art sparsity models for noise removal.

Index Terms—Patch-based, denoising, sparse representation, probabil-
ity distribution estimation.

I. INTRODUCTION

Image denoising is a well-known technique in low level computer
vision that aims to recover a clean image X from its noise-corrupted
observation Y. We assume that the noisy image is generated by
Y = X + V, where V is zero-mean additive Gaussian noise
with standard deviation σ. Many denoising approaches in the state-
of-the-art have been developed, including filtering based [1], total
variation based [2], transform based [3], learning based [4], sparse
representation based [5, 6], or deep-learning based methods [7, 8], etc.
Among various contributions, the class of patch-based representation
methods [6, 9–12] have achieved success and attracted intensive
research interests in the past decade. In these algorithms, a noisy
image Y is divided into a set of overlapping image patches {y}
(y ∈ Rm), and the denoising problem is considered on each patch.
The noisy patch is modeled as y = x + v, where x ∈ Rm is the
corresponding clean version of y and v is the additive Gaussian noise
in each patch.

The idea of patch-based denoising is based on an interesting
observation in which a clean image patch x can be represented as
a linear combination of atoms in a given dictionary D, x = Dα,
with D ∈ Rm×K ,m ≤ K, and α ∈ RK is a coefficient vector.
The denoising task is equivalent to solving for the coefficient vector
α such that y = Dα + v. More precisely, our objective is to find
the value of α under a given dictionary D and a noisy observation
y, which maximizes the posterior probability distribution p(α|D,y).
Using Bayes’s theorem, we can formulate our problem as:

α = arg max
α

p(α|D,y) = arg max
α

p(y|D,α)p(α) (1)

By assuming that y is disturbed by additive Gaussian noise v ∼
N (0, σ2), the likelihood term in (1) is determined as:

p(y|D,α) =
1

σ
√

2π
exp

(
− 1

2σ2
‖ y −Dα ‖22

)
(2)

Putting (2) into (1) and using the minus logarithm, we have:
α = arg min

α

{
‖ y −Dα ‖22 −λ log p(α)

}
(3)

Where λ = 2σ2. The problem in (3) cannot be solved without any
prior knowledge of p(α). In the literature, many authors supposed
that p(α) follows an i.i.d. (independent and identically distributed)
distribution law (e.g. Laplacian [4, 13], etc). Mathematically, this
leads to model the log-likelihood probability (log p(α)) by the `p-
norm: log p(α) = γ||α||p = γ(

∑
i |αi|

p)1/p, where γ > 0 is a

regularization parameter and p ≥ 0. Typically, the sparsity of a vector
α is related to the so-called `0-norm, which counts the number of the
nonzero entries of α. By that way, an image patch can be represented
as a linear combination of few atoms in the dictionary [5]. In practice,
denoising problems can be resolved in taking into account `p-norms
with 0 ≤ p ≤ 2. Fig. 1 shows the distribution of coefficients α
in R2 with different type of sparsity priors. Many algorithms have
been developed to solve the sparse problem with different hypotheses
of sparsity such that `0-norm [14], `p-norm (0 ≤ p ≤ 1) [15], `1-
norm [16], `2-norm [17].

Fig. 1: Geometric interpretations of different norms in 2-D space. (a), (b),
(c), (d) are the unit ball of the `0-norm, `p-norm (0 ≤ p ≤ 1), `1-norm
and `2-norm in 2-D space, respectively

In the sparse denoising approach, the reconstruction of a noisy
patch under a given dictionary is forced to an arbitrary distribution
(e.g. Laplacian [4, 13], etc). But in reality, there are no guarantees
that p(α) obeys this distribution. Our motivation is to develop a
patch-based denoising method where p(α) is estimated from the
distribution of coefficient vectors α in a RK space; this distribution is
calculated with the help of standard (clean, good quality) images and
a pre-trained dictionary. This idea exploits the redundancy between
standard images and the denoised image, where visual contents tend
to repeat in different images. Therefore, the patches in the noiseless
image follow a similar distribution as the database constructed from
standard images. Hence, we can use p(α) learned from the database
to denoise an image patch. The idea of probability distribution
estimation is described as follows. From the standard images, we
randomly extract a set of N clean image patches to form a database of
patches, where each patch is denoted as x = [x1, . . . , xm]T ∈ Rm.
Let D = [d1, . . . ,dK ] ∈ Rm×K denote a given dictionary. A good
quality patch x in the database can be represented in dictionary space
Ωα ∈ RK by its orthogonal projection:

α = (DTD)−1DTx = PDα (4)

where PD = (DTD)−1DT is the projection matrix. Hence, with a
database of patches in the image domain, we can obtain a distribution
of decomposition coefficients in Ωα. Fig. 2 shows the distribution of
α in 3D and 2D visualization, respectively, whose forms are different
from sparse distribution in Fig. 1.

There are two main contributions in this paper. First, we propose
using the probability distribution function p(α), which is estimated
from image patches in the database, as an image prior to replace
the sparsity models in the denoising problem. Second, we propose a
denoising strategy to take into account the obtained p(α) in solving
the optimization problem in (3). The remainder of this paper is orga-
nized as follows: Section II tackles the estimation of the probability
distribution p(α) in which p(α) is a piece-wise constant function.
Then, a scheme for solving the optimization problem indicated in (3)
is proposed to find α. Experimental results presented in section III
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prove the out-performance of proposed method over the sparsity
ones. Section IV discusses the limitations, future developments and
concluding remarks.

(a) (b) 3D view (c) 2D view
Fig. 2: Distribution of decomposition coefficients α of 500000 patches
in the database. (a) The given dictionary with 3 atoms. (b) 3D view of
Ωα. (c) 2D view of Ωα.

II. DENOISING BY PROBABILITY DISTRIBUTION ESTIMATION

A. Estimation of probability distribution p(α) from the database

As estimation is a difficult problem in high dimensional spaces,
we consider the α-space with dimensions up to three (Ωα ∈ R3).
This is equivalent to choosing a dictionary with only three atoms
(K = 3) D = [d1,d2,d3] ∈ Rm×3. After that, we randomly extract
a set of N image patches x ∈ Rm from the standard images to
create a database of patches. In the next stage, all of patches in the
database are projected into α-space Ωα using the projection matrix
PD . As a result, we obtain a distribution of N points in Ωα. To
demonstrate, we used the Kodak PhotoCD Dataset (Fig. 4) as standard
images and randomly extracted a set of 500000 image patches. After
the decomposition in (4), we obtained 500000 corresponding points
distributed in Ωα as shown in Fig. 2.

In the scope of this work, rather than forcing the probability
distribution p(α) to a specific i.i.d. distribution law according to
a sparsity model (log(p(α)) ∼ ||α||p), we prefer to estimate it
directly from the distribution of patches in Ωα. A simple and efficient
approach is to discretize Ωα into a set of disjoint subvolumes,
Ωα = {Ωsα}, and count the density of occurrence of points in each
subvolume Ωsα. As a result, p(α) becomes a piece-wise constant
value function. Precisely, we divide Ωα into grid cells (each cell
corresponds to a subvolume Ωsα), in which each dimension is split
into a set of intervals along the range limited by the minimum and
maximum values of α in this dimension. The probability distribution
p(α) is a cell-wise constant function whose values are calculated
by the density of number of points falling in each cell as indicated
in (5).

p(α) =


1

V sα

∑
point ∈ Ωsα∑
point ∈ Ωα

=
1

V sα

Ns
N
, if α ∈ Ωsα

0, otherwise
(5)

where Ns is the number of points inside cell Ωsα which contains α,
V sα is the volume of Ωsα (as D ∈ Rm×3), N is the total number
of points in Ωα that is equal to the number of image patches in the
database.

An important notification in the estimation of p(α) is how to divide
each dimension of Ωα into the set of intervals to restrict the number of
empty subvolumes, in which the solution of α in (3) is undetermined.
Our strategy is to split each axis of Ωα such that the same number
of points falls into each interval. By that way, the length of each
interval can adapt to the density of points. In the experiments, each
axis of Ωα is separated into 2n intervals by 2n − 1 median points
using a recursive division (n times), so that each interval contains
N/2n points. As a result, we obtain a grid of (2n − 1)K quantiles
Gα = {αi|i = 1, . . . , (2n − 1)K} in the RK space Ωα. In Fig. 3,
we demonstrate an example of distribution of points in Ωα which is
partitioned in 4 × 4 × 4 ((2n)K with n = 2, K = 3) rectangular
cells.

B. Solving the optimization problem
In this section, we will present how to employ the estimated p(α)

in image denoising task. Given the dictionary D in section II-A and
the prior knowledge of probability distribution p(α) estimated from
the database of patches, our aim is to recover a clean image patch
x from its noisy version y. The denoised patch can be generated
as a linear combination of atoms in the dictionary, x̂ = Dα∗. Our
objective is equivalent to find the value of α∗ which satisfies the
optimization problem in (3):

α∗ = arg min
α∈Ωα

{
||y −Dα||22 − λ log p(α)

}
= arg min

α∈Ωα

J(α) (6)

(a) (b)
Fig. 3: Partition of α-space into grid of 4 × 4 × 4 rectangular cells. (a)
View in 3D. (b) A x-y slice at position z = 0 with a zoom in of center.

As indicated in previous section, we have divided the α-space Ωα
into disjoint rectangular cells Ωsα, and the value of p(α) is constant
in each cell Ωsα. Consequently, the cost function J(α) in (6) becomes
a cell-wise quadratic function. A simple way for finding the solution
of α is to minimize J(α) on each rectangular cell Ωsα and then
select the best value α∗ from which we achieve the smallest cost.
Therefore, we can rewrite (6) as:

α∗ = arg min
Ωsα⊂Ωα

{
arg min
α∈Ωsα

J(α)

}
= arg min

Ωsα⊂Ωα

Js(α) (7)

With p(α) is calculated from (5), the minimum cost function on
Ωsα, denoted as Js(α), becomes:

Js(α) = arg min
α∈Ωsα

J(α) = arg min
α∈Ωsα

||y −Dα||22 − λ log

(
Ns
V sαN

)
(8)

Js(α) turns into the minimization of a convex quadratic function
J(α) on a subvolume Ωsα. Because there exists only one cell Ωdα ∈
Ωα such that the derivative ∂J(α)

∂α
= 0 at αd = (DTD)−1DTy,

and αd ∈ Ωdα, it is easy to prove that for all other cells Ωsα 6= Ωdα,
the optimized value of Js(α) occurs at one of four corners of Ωsα.
Moreover, we have partitioned the α-space Ωα into 2nK rectangular
cells by grid of (2n − 1)K quantiles Gα. Therefore, these points
becomes the corners of rectangular cells Ωsα, and the optimal value
of J(α) in (6) will take place either at αd or at one point in Gα.
Let Lα = {αd,Gα} denote the set of anchor points. For a noisy
image y, to minimize (8), we can easily compute the value of cost
function J(α) at anchor points and choose the optimized point α∗

among Lα where J(α∗) is minimum. The value of p(α) (second
term in (8)) and the production Dα at each anchor point α ∈ Lα can
be computed offline to accelerate the speed of the optimization of (8).
The complexity of solving (8) is O(m22nK) which depends on the
patch size (y ∈ Rm) and the number of anchor points ((2n−1)K ). To
sum up, the denoising work flow involving the optimization process
is described in algorithm (1).

As it can be seen in (6), the estimation of probability distribution
p(α) has a direct influence on solving α. The two important
parameters that affect the determination of p(α) are the number of
dimensions (K) of α-space Ωα, as well as the number of intervals
along each dimension. The former, K is related to the number of
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atoms in the dictionary (K), and the latter depends on the number
of grid points we choose on each dimension. In our experiments,
each coordinate axis of Ωα is split by 32 intervals (2n intervals with
n = 5). Moreover, in high dimensional space Ωα (K > 3), for a
given distribution of patches (points) in Ωα, the number of rectangular
cells will increase exponentially, resulting in a large portion of empty
cells, and thus invalid estimates. For the visualization purpose, we
choose a dictionary composed of only three elements (K = 3) so
that p(α) can be visually drawn in a three dimensional coordinates.

Algorithm 1: Denoising
Input : Set of standard images {X}, Noisy image Y,

Dictionary D, noise level σ, regularized parameter λ,
patch size, overlap between two patches.

1 Estimate the probability distribution p(α) using (5) by first
determining the grid of (2n − 1)K median points
Gα = {αi|i = 1, . . . , (2n − 1)K} (divide each dimension into
2n intervals, each one contains N/2n points) from standard
images {X} and dictionary D as described in section (II-A).

2 Partition noisy image Y into overlapping patches y
3 for each image patch y ∈ Y do
4 Subtract its mean value: y = y − µy .
5 Calculate αd = (DTD)−1DTy and find its rectangular cell

Ωdα such that αd ∈ Ωdα ⊂ Ωα.
6 Define a set of anchor points: Lα = {αd,Gα}
7 Calculate values of the cost function J(α) in (6) at all

anchor points α ∈ Lα.
8 Choose the optimized value α∗ = arg minα∈Lα J(α).
9 Estimate the denoised image patch: x̂ = Dα∗ + µy

10 end
11 Average the overlapped regions of denoised patches x̂ to obtain

the entire denoised image X̂.
Output: The denoised image X̂.

III. DENOISING PERFORMANCE AND EVALUATION

In this section, our aim is to demonstrate that for a given dictionary,
using the estimated probability distribution as the image prior is
more efficient than the sparsity models for noise removal. Given
a dictionary, our method differs from the existing sparsity models
in the way we determine the probability distribution function p(α).
While the sparsity methods assume that the probability p(α) in Ωα
obeys a specific model, we propose to estimate p(α) directly from the
distribution of α in Ωα. In the remaining of this section, we compare
the denoising performance of our proposed method with two famous
sparse models `0-norm (9) and `1-norm (10), which known as least
absolute shrinkage and selection operator (LASSO). The comparison
evaluates the influence of the chosen probability models of p(α)
(sparsity or estimation) on the reconstruction of noisy image via
solving the optimization problem (6). Therefore, we fix the dictionary
D, as well as the size of image patch y for the proposed and
sparse methods to have a nondiscriminatory assessment. Comparison
with other denoising methods such as BM3D [3], NLM [9], deep-
learning [8] is out of the scope of the current manuscript.

α = arg min
α

{
‖ y −Dα ‖22 −λ||α||0

}
(9)

α = arg min
α

{
‖ y −Dα ‖22 −λ||α||1

}
(10)

The problem in (9) can be efficiently solved by the orthogonal
matching pursuit (OMP) algorithm [14]. In our implementation, we
use the LARS algorithm [13] to find the solution of (10). We refer

to our proposed method as ProbaEst, and the others in (9) and (10)
as OMP and LARS, respectively.

Our proposed estimation method is limited to a dictionary with
three atoms (K = 3). For this reason, the method is a priori
best suited for low complexity images. To explore its performance,
we have constructed a test benchmark on synthetic images in sec-
tion III-B. We also discuss the results obtained on binary and natural
images in sections III-C and III-D.
A. Parameter setting

In all tests, the size of an image patch is set to 3 × 3 and the
overlap between two adjacent patches is 2 pixels. In cases of binary
and natural images, the Kodak PhotoCD Dataset (shown in Fig. 4)
is used as standard images. For the stage of estimation of p(α) as
described in section II-A, we use N = 500000 patches randomly
extracted from standard images to form the database of patches.

In our empirical work, each axis in the α-space is divided into
25 = 32 intervals. Moreover, the noisy images are generated from
the corresponding noise-free versions by adding Gaussian noise with
different levels σ = 10, 20, 30. In regard to binary tests, all images
are converted into binary ones using a threshold method. To evaluate
the objective quality of denoising of vertical structure and natural
images, two widely used metrics peak signal-to-noise ratio (PSNR)
and structural similarity index (SSIM) are employed. For binary
images, we adopt two metrics: the Dice ratio and the Distance-
Reciprocal Distortion Measure (DRDM [18]) which exploits mutual
relations of pixels within image to measure the distortion between
two images. An essential notice is that the small value of DRDM
indicates that two binary images are close.

Fig. 4: Some of standard images in Kodak PhotoCD Dataset (http://r0k.
us/graphics/kodak/)

B. Denoising of vertical structure images

We first evaluate the denoising performance of our proposed
method ProbaEst with two sparse models OPM and LARS on simple
vertical structure images. We generate 4 vertical structure test images
made of constant-gray-value stripes placed on a dark background as
show in Fig. 5(b)-(e), where both the width and values of stripes
are chosen randomly. We also need an adaptive standard image with
similar vertical structures to exploit the redundancy of informations
between images. Therefore, we create an image with stripes of gray
levels gradually increasing from 1 to 255 as shown on Fig. 5(a) and
use it as standard image for all comparing methods.

(a) (b)
||

(c)

(d)
||

(e)
||

(f) (g) (h)
Fig. 5: (a) Vertical structure standard images with gradually increasing
values of stripes. (b)-(e) Vertical structure test images with random width
and values of stripes. (f)-(h) The patch-form of the three elements (atoms)
of the dictionary D

In our experiments, we observe that the results of denoising are
highly dependent on the choice of dictionary D. In regard to our
task, where all images are composed of vertical stripes, a dictionary
with vertical structural atoms can be more adapted to the image
structure. Therefore, we select a dictionary with the vertical structure
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σ = 10 σ = 20 σ = 30Image OMP LARS ProbaEst OMP LARS ProbaEst OMP LARS ProbaEst
test1 35.96 37.77 35.73 31.23 31.95 32.47 28.16 28.47 29.58
test2 36.06 38.17 35.70 31.23 32.14 32.56 28.19 28.87 29.67
test3 35.95 38.26 35.63 31.38 32.39 32.52 28.42 28.86 29.86
test4 35.99 38.10 35.69 31.36 32.03 32.48 28.32 28.61 29.90

PSNR

Average 35.99 38.07 35.68 31.30 32.13 32.51 28.27 28.70 29.75
test1 0.887 0.951 0.963 0.773 0.849 0.881 0.670 0.737 0.785
test2 0.876 0.947 0.958 0.740 0.827 0.864 0.630 0.711 0.760
test3 0.868 0.943 0.954 0.737 0.827 0.861 0.626 0.706 0.757
test4 0.884 0.950 0.960 0.764 0.844 0.876 0.657 0.729 0.779

SSIM

Average 0.879 0.948 0.959 0.735 0.837 0.870 0.645 0.721 0.770

TABLE I: The PSNR and SSIM measure of denoising of vertical stripes
images in Fig. 5 with different methods.

as exposed in Fig. 5(f)-(h). Tables I provides the results of denoising,
where the best values of PSNR and SSIM are in bold red numbers.
We can observe that for small noise corruption (σ = 10), the LARS
algorithm (10) yields better values of PSNR, but with heavier noise
levels, the proposed method produces higher performance, with the
improvements are 0.4 ∼ 1.5 dB of PSNR and 0.03 ∼ 0.12 of SSIM.
For visual assessment, Fig. 6 demonstrates the subjective results of
image test4 with noise levels σ = 30. It is evident that the OMP
and LARS are likely to generate much more artifacts in the denoised
images than the proposed method. More precisely, referring to the
results from Fig. 6(c)-(e), with the chosen adaptive vertical dictionary,
the sparsity methods tend to strengthen the vertical artifacts, while
the proposed method ProbaEst is more robust against that kind of
reconstruction distortion.

(a) Original image (test4) (b) Noise image (19.03 - 0.281)

(c) OMP (28.32 - 0.657) (d) LARS (28.61 - 0.729)

(e) ProbaEst (29.75 - 0.779)
Fig. 6: Results of denoising on image test4 with σ = 30. (a)-(e) are
the original image, noisy image, result of OMP, LARS and ProbaEst,
respectively, with the zoom-in of region-of-interest (R.O.I).

C. Denoising of binary images

In this part, we will not only compare the performance of proposed
method with the sparse patch-based algorithms OMP and LARS, but
also with others denoising methods developed for binary images,
called Iterated Conditional Mode (ICM) [19] and Graph Cuts [20].
The ICM method is based on the maximization of local conditional
probabilities, while the latter optimizes the flow through an associated
network constructed from image. Please refer to [19] and [20] for
more details.

In the experiment, all images are converted into binary form using
a threshold method as a pre-processing step. We used all the images
(24) in the Kodak PhotoCD Dataset (Fig. 4) as standard images
and some other widely used test images (shown in Fig. 7) for the
evaluation. The dictionary is chosen as the same as Fig. 5(f)-(h) for
the ProbaEst, OMP and LARS methods.

Table II presents the results of denoising of binary images in both
terms of Dice Ratio and DRDM, which demonstrates the efficiency of
proposed method for binary image denoising. For visual evaluation,
Fig. 8 shows the results of denoising on binary image of monarch. As
can be observed, the ProbaEst is more efficient in noise reduction than
the sparsity methods (OMP, LARS) and the ICM. More particularly,
the OMP and LARS generate images with vertical artifacts, while the
Graph Cuts tends to produce an over-expansion foreground image.

Visually, the proposed method achieves very competitive denoising
performance, where its result is more similar to the original image.

(a) (b) (c) (d) (e)
Fig. 7: Some of widely used test images. (a) House. (b) Lena. (c)
Monarch. (d) Peppers. (e) Baby.

(a) Original im. (b) Noise image (c) OMP (d) LARS

(e) ICM (f) Graph Cuts (g) ProbaEst
Fig. 8: Results of denoising on binary image of monarch with σ = 30.

D. Denoising of natural images

In the rest of our work, we compare the performance of the
proposed method with two sparsity-based algorithms OMP and LARS
for natural images. As in section III-C, we use all 24 images in the
Kodak dataset (Fig. 4) as standard images. Moreover, we carry out
the experiments by adopting the same dictionary for all methods,
which is directly trained from each noisy image, using the K-SVD
method [10]. In reality, with a simple dictionary of three atoms,
the denoising results will not be good enough for visual quality
requirement. But we have to emphasize again that the objective of
our research is to demonstrate that using the estimated probability
distribution as the image prior is more efficient than a sparsity model
for noise removal. As illustrated in table III, the proposed method
yields better values of PSNR and SSIM than the others in most of
cases of high noise levels (σ = 20, 30). In particular, Fig. 9 shows
the denoising results in which the proposed method ProbaEst and the
LARS are more efficient in noise reduction than the OMP. The results
of LARS and ProbaEst are very similar. But if we carefully observe
the background and some homogeneous regions (R.O.I regions) in
the images, the ProbaEst produces less artifacts than the LARS.

IV. DISCUSSION

In this paper, we proposed a novel idea for patch-based denoising
where the prior of patches distribution is learned from the external
database. More precisely, we proposed a method for the estimation of
probability distribution function by spatial division and demonstrated
how to employ it in an optimization-based denoising process. The
experimental results indicate that the approach improves considerably
the results of denoising for some simple models of image when
compared to the classical sparsity methods. The objective of our work
is to make in evidence that the idea of embedding the probability
distribution learned from external database is efficient and is a
promising approach for image denoising.

However, a drawback of the proposed method is the implemen-
tation for high dimensional (K > 3) α-space due to the curse of
dimensionality. In that case, using the same framework of spatial
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σ = 20 σ = 30 σ = 40Images OMP LARS ICM Gr.Cuts ProbaEst OMP LARS ICM Gr.Cuts ProbaEst OMP LARS ICM Gr.Cuts ProbaEst
House 0.875 0.877 0.902 0.819 0.900 0.856 0.856 0.883 0.797 0.883 0.838 0.838 0.871 0.788 0.875
Lena 0.908 0.917 0.940 0.916 0.941 0.883 0.884 0.921 0.889 0.923 0.847 0.848 0.902 0.871 0.900
Monarch 0.923 0.930 0.930 0.876 0.948 0.894 0.894 0.894 0.808 0.931 0.863 0.863 0.861 0.759 0.923
Peppers 0.941 0.948 0.955 0.946 0.963 0.918 0.918 0.930 0.919 0.951 0.888 0.888 0.907 0.885 0.939
Baby 0.971 0.974 0.980 0.976 0.980 0.961 0.961 0.974 0.969 0.976 0.945 0.945 0.967 0.962 0.970

Dice

Average 0.923 0.929 0.941 0.906 0.946 0.902 0.902 0.920 0.876 0.932 0.876 0.876 0.901 0.853 0.921
House 10.56 10.00 6.44 19.90 6.24 12.73 12.72 8.91 23.90 8.48 14.93 14.96 10.32 25.21 9.51
Lena 9.43 8.24 4.96 8.57 4.61 12.23 12.21 7.04 12.52 6.57 16.58 16.53 9.43 15.50 9.29
Monarch 4.49 3.93 4.25 8.84 2.23 6.51 6.50 7.13 15.99 3.26 9.00 9.01 10.27 21.97 3.85
Peppers 6.19 5.22 4.31 5.17 2.90 8.99 8.99 7.73 9.11 4.16 12.93 12.94 10.98 14.71 5.69
Baby 4.08 3.44 1.90 2.43 1.72 5.77 5.78 2.77 3.53 2.37 9.05 9.07 4.17 5.04 3.40

DRDM

Average 6.95 5.96 4.37 8.98 3.54 9.24 9.24 6.71 13.01 4.96 12.49 12.50 9.03 16.48 6.34

TABLE II: Comparison of denoising methods for binary images using Dice ratio and DRDM measurement.
σ = 10 σ = 20 σ = 30Images OMP LARS ProbaEst OMP LARS ProbaEst OMP LARS ProbaEst

Monarch 32.29 32.38 31.69 28.42 28.96 29.23 25.86 26.55 27.07
House 33.17 33.65 33.17 29.22 30.21 30.29 26.63 27.84 28.17
Lena 33.04 33.50 32.73 28.90 29.81 29.90 26.38 27.52 27.78
Peppers 33.11 33.69 32.85 29.04 30.07 30.14 26.48 27.64 27.90
Barbara 31.63 31.28 30.66 28.07 28.51 28.58 25.72 26.54 26.69
C. Man 31.22 30.53 29.96 27.94 28.17 28.16 25.61 26.04 26.43
Baby 33.12 33.59 33.40 29.00 30.01 30.14 26.50 27.78 27.98

PSNR

Average 32.51 32.66 32.06 28.65 29.39 29.49 26.15 27.13 27.57
Monarch 0.906 0.937 0.927 0.807 0.860 0.867 0.716 0.779 0.800
House 0.833 0.856 0.854 0.689 0.751 0.760 0.575 0.653 0.677
Lena 0.873 0.910 0.898 0.744 0.811 0.818 0.637 0.714 0.734
Peppers 0.876 0.917 0.906 0.752 0.825 0.832 0.642 0.726 0.748
Barbara 0.876 0.880 0.868 0.764 0.797 0.799 0.666 0.717 0.728
C. Man 0.847 0.879 0.869 0.709 0.771 0.777 0.595 0.661 0.685
Baby 0.876 0.905 0.902 0.747 0.804 0.812 0.637 0.709 0.725

SSIM

Average 0.869 0.897 0.889 0.744 0.802 0.810 0.638 0.708 0.728

TABLE III: Denoising performance on natural images with respect to
PSNR and SSIM.

discretization is not efficient and inapplicable. Nevertheless, to im-
prove the quality of denoising for real natural images, we have to
select a dictionary with higher number of atoms (K � 3). To deal
with this problem, we can use the Gaussian mixture model (GMM)
to learn the probability distribution function p(α) as a mixture of
a finite number of Gaussian distributions. We will expand proposed
method with GMM in future work.
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Fig. 9: Results of denoising on image of peppers with σ = 30.
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