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Abstract—This paper deals with a mixed norm of complex
vectors, i.e., the sum of amplitude spectra, and its minimization
problem. A combination of this mixed norm and image decom-
position problem works well for reduction and decomposition
of pattern noise that arises when scanning old photographs with
granulated surface. Generally, the spectral distribution of natural
images decreases smoothly from low frequency band toward
high frequency band, while that of pattern noise is distributed
sparsely. Therefore, we assume that an observed image consists
of a latent image component and a pattern noise component,
and characterize them by using the total variation function and
the proposed function, respectively. This enables a reasonable
decomposition of the two components. Compared to similar
decomposition methods such as Robust PCA, our method has a
good decomposition accuracy for this task, and low computational
cost.

I. INTRODUCTION

When scanning old photographic paper as digital data, noisy
patterns sometime appear on the images as shown in Fig. 1(a)
due to the light of the scanner reflected from the rough
granulated surface of the paper, and one can see particulate
texture appearing over the whole region of the image. To
reduce this kind of artifact physically, changing a scanner
device or shooting the picture under adjusted light positions
is effective, but those methods are actually time-consuming.
Therefore, we aim at the software-based reduction of pattern
noise, and propose an equation model for separating the
original image and the pattern noise.

Our separation model and the algorithm are based on robust
principal component analysis (RPCA) proposed by Wright
et al. [1] and reflection component removal proposed by Li
et al. [2]. These methods assume that an observed image
consists of two components, and separate it into an ideal image
component (hereafter called “latent” image) and an artifact
image component different from shot noise. When expressing
the model as a mathematical optimization problem, in addition
to the data fidelity expressing the observation process, these
methods utilize some regularizations expressing the feature of
each component, and separate image components by utilizing
the differences of the regularizations.

In the above methods, it is important how to characterize the
artifact image. The RPCA [1], [3] regards luminance change
(specular reflection) caused by reflected light as an artifact
component, and characterize it so as to minimize the sum
of absolute luminance values over the whole image (i.e., ℓ1
norm). The reflection component removal [2] deals with a faint
and blurred reflection image component, and characterize it so

(a) (b)

Fig. 1. Pattern noise arises over a scanned image (a) and artifact pattern
arises over the spectral component (b). In the spectral image, the 1st quadrant
is shown and the intensity range is normalized for displaying the detail. The
top left and the bottom right part correspond to the low and the high frequency
band.

as to minimize the sum of luminance variations over the whole
image (Tikhonov regularization).

In this paper, we regard pattern noise as an artifact com-
ponent. As shown in Fig. 1(b), in the spectra of an image
in which the same artifact pattern arises iteratively, spectra
corresponding to the pattern tend to appear sparsely together
with high peak values. Therefore, we characterize it so as
to minimize the sum of amplitude spectra (hereafter called
“spectra” for simplicity) over the whole images frequencies.

Using the aforementioned component separation model and
the vector norm of complex numbers, we propose an equation
model for separating a latent image and a pattern noise
image. In the model, the latent image is characterized by total
variation minimization, while the pattern noise is characterized
by ℓ1 norm minimization of spectral values with a zero
mean constraint. This model can be expressed as a convex
optimization problem, so the global solution is given by using
appropriate algorithms. Additionally, subproblems appearing
in the iterative algorithm are calculated efficiently.

II. MIXED NORMS AND PROXIMITY OPERATORS FOR REAL
AND COMPLEX VECTORS

We first describe norm functions and proximity operators
for real and complex vectors, which are used in the proposal
method. Since definitions for the real-valued vector are well
known, the explanation is mainly intended for complex-valued
vectors.

Mixed ℓ2,1 norm of real vectors and its proxim-
ity operator: At a pixel i, when handling K multi-
ple values {xi,j}Kj=1 (hereafter called “group variables”),
and considering the sparsity of the group variables, mixed
norms [4], [5] are usually used. The mixed ℓp,q norm of a
vector consisting of all group variables of N pixels x :=
[x1,1, x1,2, . . . , x2,1, x2,2, . . . , xN,K ]⊤ ∈ RKN is given by
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∥x∥p,q :=
(∑

i

(∑
j |xi,j |p

)q/p)1/q

. When p = q, it becomes
the standard ℓp norm. In this paper, the ℓ2,1 norm is used:

∥x∥2,1 :=
∑

i

√∑
j |xi,j |2. (1)

This ℓ2,1 norm function is a convex function giving the
minimum value at the origin where all values become xi,j = 0.
Although it is non-differentiable at the origin, the function is
proximable, i.e., its proximity operator described in the next
paragraph is easily obtained.

Then, we describe the proximity operator corresponding
to the ℓ2,1 norm. The operator is used as an alternative of
gradient calculation for non-differentiable convex functions
F , and defined as a map: proxγF : RN → RN : x 7→
argminx′ γF (x′)+1

2∥x
′−x∥22. The calculation corresponding

to the proximity operator of the ℓ2,1 norm, i.e., proxγ∥·∥2,1
(x),

is known to be given as follows [6]:

∀i x′
i,j := si xi,j , si := 1− γ

max
(
γ,

√∑
j |xi,j |2

) , (2)

where si is the scaling variable, and the function max(·, ·)
returns the maximum variable. In this calculation, firstly, the
ℓ2 norm of group variables at each pixel is computed. If the
value is sufficiently small lower than γ, all the group variables
are erased (si = 0, so x′

i,j = 0). Otherwise, the group variables
are scaled related to the magnitude of the norm.

Mixed ℓC,1 norm of complex vectors and its proximity
operator: At a pixel i, when handling a complex number
as ci := cRi + cIi j ∈ C1, the norm is usually defined as
| · |C : C1 → R1 : ci 7→

√
(cRi )2 + (cIi )

2, where C is added
to distinguish it from the real-valued vector norm.

Then, the mixed ℓC,1 norm of a complex vector consisting
of all complex elements of N pixels c = [c1, . . . , cN ] ∈ CN

(i.e., the mixed norm of the complex-valued norm and the ℓ1
norm, generally called the “ℓ1 norm of complex vectors”) is
given by

∥ · ∥C,1 : CN → R1 : c 7→
∑

i |ci|C . (3)

This ℓC,1 norm function is a convex function on the complex
plane and gives the minimum value at the origin where all
values become (cRi , cIi ) = (0, 0).

The proximity operator corresponding to the ℓC,1 norm is
defined as proxγ∥·∥C,1

(c) := minc′
∑

i γ|ci|C + 1
2 |c

′
i − ci|2C .

This function is non-differentiable at the origin, but otherwise
differentiable, so we can derive the following calculation by
organizing conditions giving the minimum value:{

c′
R
i := s · cRi

c′
I
i := s · cIi

where s :=

(
1− γ

max(γ, |ci|C)

)
. (4)

This is the same calculation as the mixed ℓ2,1 norm shown in
(2). As for the complex vector, basically, we can regard the
real number and the imaginary number as a group variables
[3].

III. PROPOSED METHOD

This section describes a formulation as a convex optimiza-
tion problem for separating a degraded image as shown in
Fig. 1(a) into a latent image and a pattern image. We first
describe the image observation model (data fidelity term), and
then describe characterization methods (regularization terms)
for separating an image into each component.

Construction model of image components and the data
fidelity term: We treat an observed image as a grayscale
image of N pixels, and as a column vector y ∈ RN consisting
of pixel values. Although Fig. 1(a) is a RGB color image,
in this paper for simplicity, our method processes each color
channel independently, and does not consider the relationship
of colors.

Then, we define the latent image l ∈ RN and the pattern
noise image e ∈ RN , and define the relationship between them
and the observed image as y := l+e1. Additionally, we make
the following assumptions: the mean value of the pattern noise
is assumed as 0; shot noise arising in shooting is sufficiently
small and omitted from the model; the noise is additive white
Gaussian noise.

When handling the above observation model as an op-
timization problem, the model is generally expressed as a
minimization problem of the ℓ2 norm of observation errors. On
the other hand, our method formulates it as a ℓ2 ball constraint
for tractability: ∥y− (l+ e)∥2 ≤ η, 1⊤e = 0, where η (≥ 0)
is a user defined tolerance. 1 ∈ 1N is a vector of ones, and
this constraint makes the mean value (sum) be 0.

Characterization for the latent image: TV regulariza-
tion: In many cases, luminance values of an image are
constant and flat in many regions, and the luminance values
are sharply changed around object edges. In the case of clear
images, the sum of luminance variations (total variation: TV)
becomes small [7]. We also consider this TV minimization,
and use the mixed ℓ2,1 norm and a differential filter, define
the character as ∥Dl∥2,1, where D := [D⊤

v ,D
⊤
h ]

⊤ ∈ R2N×N

is the differential filter matrix consisting of the horizontal and
vertical differential filters Dv and Dh ∈ RN×N . Note that
the differential filter is a general one having 2-tap coefficients
[−1, 1], but is a circular type filter in order to simplify the
calculation described later. Additionally, the transposed filter
matrix D⊤ corresponds to the filter having 180◦ rotated
coefficients [1,−1].

Characterization for the pattern noise: spectral regu-
larization: In a pattern image in which the same artifact
pattern arises iteratively, its spectra over frequency coordinates
corresponding to the pattern tend to become large. When
the same pattern appears strongly, the sum of spectral values
(total spectra) becomes small. We focus on this character, and
uses the mixed ℓC,1 norm and the Fourier transform, define
the minimization of spectra as ∥Fe∥C,1, where F ∈ RN×N

denotes the fast discrete Fourier transform. Note that we define

1When assuming that pattern noise is caused by reflected light, a pixel-wise
multiplicative model y := l ◦ e is appropriate. However, we only consider
the basic additive model due to the page limitation.
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F as a unitary matrix so that the sum of the square of a
function is equal to the sum of the square of its transform
2. In this case, the complex conjugate transpose (Hermitian
transpose) FH and the inverse Fourier transform F−1 become
equivalent FH = F−1, which makes handling the following
equations be easier.

Formulation for pattern noise decomposition: Combin-
ing the aforementioned data fidelity term, regularization terms,
and constraint, we propose the formulation for noise pattern
separation as

min
l,e

∥Dl∥2,1 + λ∥Fe∥C,1,

s.t. ∥y − (l+ e)∥2 ≤ η, 1⊤e = 0,
(5)

where the parameter λ in the objective function balances
the 1st and 2nd terms. The parameter values of λ and the
tolerance parameter η are described in the experimental results
V. Note that we can embed the constraint 1⊤e = 0 into
the minimization of spectra, and handle it with just a few
modifications in the algorithm described later, so omit it for
simplicity.

IV. SOLUTION ALGORITHM USING ADMM

For solving the proposed equation in (5), we can use
some algorithms, and here show an algorithm using ADMM
(alternating direction method of multiplies) [8], [9]. Due to
the page limitation, we omit how to derivate the algorithm
and calculations in each step.

First, we make preparations for adding the constraints to the
object function by using the method of Lagrange multipliers.
To express the ℓ2 ball constraint By,η := {x | ∥x − y∥2 ≤
η} as a regularizer, we introduce an indicator function ιBy,η

:
min
l,e

∥Dl∥2,1+λ∥Fe∥C,1+ιBy,η
(l+e). The indicator function

is defined as ιC(x) :=

{
0 x ∈ C,
∞ otherwise, where the set C is a

convex set. In the case of the ℓ2 ball, the indicator function
becomes a convex function whose proximity operator can be
easily calculated (see (10)). Then, these functions are non-
differentiable convex functions, so we replace the variables to
make the functions more tractable form, zl := Dl, ze := Fe,
z := l+ e, and add these equality constraints to the objective
function as

L(l, e, {z}, {u}) := ∥zl∥2,1 + (ρ/2)∥zl − (Dl+ ul)∥22
+ λ∥ze∥C,1 + (ρ/2)∥ze − (Fe+ ue)∥22
+ ιBy,η (z) + (ρ/2)∥z− (l+ e+ u)∥22,

(6)

where ul, ue, u are Lagrange multipliers. ρ is the step size to
control the convergence of the ADMM, and set to ρ = 1 in
this paper.

Algorithm of ADMM: When solving (6), the following
minimization subproblems w.r.t. each variable are solved itera-

2The Fourier transform function used in software is generally non-unitary,
and the output is scaled as

√
NFx. When using these non-unitary transfor-

mation, we need multiply λ by
√
N described later in Sec. 5.

tively, and each variable is solved while fixing other variables.
The calculation at t-th iteration is given by

lt+1, et+1 := min
x

L(ztl , z
t
e, z

t,ut
l ,u

t
e,u

t),

zt+1
l := min

zl

L(xt+1,ut
l) = prox 1

ρ∥·∥2,1
(Dlt+1 + ut

l),

zt+1
e := min

ze

L(xt+1,ut
e) = proxλ

ρ ∥·∥C,1
(Fet+1 + ut

e),

zt+1 := min
z

L(xt+1,ut) = prox 1
ρ
ιBy,η

(lt+1+ et+1+ ut),

ut+1
l := min

ul

L(xt+1, zt+1
l ) = ut

l +Dlt+1 − zt+1
l ,

ut+1
e := min

ue

L(xt+1, zt+1
e ) = ut

e + Fet+1 − zt+1
e ,

ut+1 := min
u

L(xt+1, zt+1) = ut + lt+1+ et+1− zt+1.

(7)

The details how to solve l, e, and the proximity operators are
described later. The number of iterations is shown in Sec. V.
As for the initial values, we set lt=0 = y, and other variables
to zero vectors.

Solutions of l and e: In (6), all terms related to l and e
are ℓ2 norms. The minimum cost is given when the gradients
of l and e become 0. Calculating ∂

∂lL = 0 and ∂
∂eL = 0, we

get the following equation in the form
(
A11 A12

A21 A22

)(
x1

x2

)
=

(
b1

b2

)
as(

I+D⊤D I
I I+ FHF

)(
l
e

)
=

(
(zt − ut) +D⊤(ztl − ut

l)
(zt − ut) + FH(zte − ut

e)

)
, (8)

where FHF = I can be simplified. When the differential filter
is defined as circular convolution, each block Aij becomes a
special matrix having a BCCB (block circulant circulant block)
structure, and it can be diagonalized by Fourier transformation
as FAijF

−1. The inverse of a matrix consisting of diagonal-
ized blocks is easily obtained [10].

We define a function computing the transfer function
of a filter corresponding to each block as F (Aij) :=
diag(FAijF

−1), where diag(·) extracts diagonal values of
the matrix as a vector. Additionally, we define Fourier trans-
form and inverse Fourier transform as F (bi) := Fbi and
F−1(bi) := F−1bi. Using these functions, the solution is
obtained as

lt+1 = F−1

(
F (A22)◦F (b1)− F (A12)◦F (b2)

F (∆)

)
,

et+1 = F−1

(
F (A11)◦F (b2)− F (A21)◦F (b1)

F (∆)

)
,

(9)

where ◦ and fraction denote element-wise multiplication and
division. The denominator is given by F (∆) = F (A11)◦
F (A22)− F (A12)◦F (A21).

Solutions of zl, ze, and z: calculation of proximity
operators: As for proximity operators corresponding to
the mixed norms prox 1

ρ∥·∥2,1
(·) and proxλ

ρ ∥·∥C,1
(·), they can

be calculated as described in (2) and (4). Then, as for the
constraint that makes the mean value of e be 0, it can be
realized by set the direct current (DC) component of zt+1 to 0:
(zt+1

l )DC := 0. Finally, the proximity operator corresponding
to the ℓ2 ball is calculated as

proxγιBy,η (v) :=

{
v ∥v − y∥2 ≤ η,

y + η v−y
∥v−y∥2

otherwise. (10)
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Lena Mandrill Texture1 Texture2 Texture3

Fig. 2. Original latent images and pattern images used in the simulation
experiment.

V. EXPERIMENTAL RESULTS

This section shows, firstly, simulation results using the
original latent and pattern images, and then actual results
using scanned and shot images. All parameters used in this
experiment are fixed: as for our model, λ = 3 and η = 0; as
for the ADMM, ρ = 1 and the number of iteration is 100.

Simulation experiment: Preparing original latent and
pattern images as shown in Fig. 2, we generate observation
images by linearly mixed them, and then separating the
observation images into latent and pattern images again, finally
compare PSNRs (peak signal and noise ratio) between the
original images and resultant images. We used the “Lena”
and “Mandrill” as the latent images, while free resources3 as
the pattern images. The image sizes are all 512 × 512 and
its luminance is normalized within the range [0, 1]. As for the
pattern images, partial 86×86 regions are shown for displaying
the details. Note that, in generating observation images, the
luminance values of each pattern image are centered so that
the mean value to be 0, and then scaled to half (×0.5), finally
added to the latent images.

Qualitative evaluation of resultant images: Figure 3,
additionally Fig. 4(d), show a few of resultant images. In
Fig. 3, from the left, (a) original latent image, (b) original
pattern image (the gray color corresponds to the zero lumi-
nance), (c) mixed image, (d) obtained latent image, and (e)
obtained pattern image are shown. The bottom row shows
spectral images of them. Here, in Fig. 4(d), we used an easier
pattern to be separated, which has continuous circularity at the
boundary of the image and has isotropic pattern with a similar
texture in horizontal and vertical directions. In contrast, we
used a difficult pattern in Fig. 3, which is anisotropic texture
and has non-continuous circularity, especially in the horizontal
direction.

In the easier pattern in Fig. 4(d), although the pattern is
faintly left in the latent image, one can see that the separation
gives a good result. On the other hand, in the difficult pattern in
Fig. 3(d) and (e), the pattern is left in the horizontal direction
toward which the pattern has non-continuous circularity. In its
spectra, line-like textures included in (c) can be removed (d).
However, high frequency peaks (corresponding to the fur of
the Mandrill) results in being wrongly separated.

Comparison with related methods: Figure 4 shows com-
parison results with the aforementioned RPCA [1] and reflec-
tion removal [2]. The parameters of each method are adjusted
to be able to extract the pattern components. Here, we blur the

3WArgo: http://japanese-pattern.info/

TABLE I
PSNRS (dB) between decomposed images and original images in the

simulation experiment.

with continuous texture loop non-continuous texture
Lenna Mandrill

Texture 1 2 3 1 2 3
Mixed 15.1 14.1 14.4 15.1 14.0 14.3
Latent 21.9 29.5 26.8 22.5 26.5 21.6
Pattern 20.6 31.2 26.0 21.7 27.2 21.4

Lenna Mandrill
1 2 3 1 2 3

15.1 14.2 14.4 15.1 14.1 14.3
19.3 25.4 22.7 18.9 22.8 20.6
18.3 25.1 21.7 18.0 22.7 20.2

pattern images so that they look like reflections dealt with in
[2]. For blurring them, we use the Gaussian type point spread
function with 3 (pixel) standard deviation. Additionally, in [2],
we change the pixel-wise multiplicative model to the additive
model used in our method.

In the RPCA (Fig. 4(b)), although we expect that the data
matrix derived form a pattern image will be a low rank
matrix, the latent image is also low rank, so the low frequency
component was wrongly extracted when we tried to extract the
pattern component ((b) top row). In the reflection removal (c),
although we tried to extract the reflection component as the
pattern, the low frequency component of the latent image was
also extracted as a reflection component ((c) bottom row). On
the other hand, our method can clearly separate the latent and
the pattern image.

Quantitative evaluation based on PSNR: Table I shows
the color PSNRs between separated results and their original
images. Higher PSNR indicates higher similarity to the orig-
inal image. The reconstruction degrees are different between
cases when the pattern has continuous circularity or not at the
boundary of an image. Therefore, both cases are, respectively,
shown in the left and the right table. From the table, higher
PSNRs are obtained when the pattern has the continuous
circularity, especially in the Texture2 having the isotropic
minute pattern. In contrast, the lowest PSNR is obtained in the
Texture1 having flat regions. When a texture has flat regions,
peak spectral values appear in the low frequency band. This
makes it difficult to distinguish the peaks from the spectra of
a latent image.

An experiment using practically scanned and shot im-
ages: Figure 5 shows results used actual scanned and shot
images. The top row is the result of a scanned old image
previously shown in Fig. 1. The bottom row is the result of
a shot image taken from corridor to room inside through a
blindfold sheet. In the scanned image, the image is success-
fully separated because the dimple pattern has evenness. In the
shot image, the pattern cannot be completely removed, but can
be reduced. This is caused by the opacity of the slit dots and
the uneven sizes of the dots (sizes become small toward the
bottom side).

Execution time: We implemented the aforementioned
methods on a PC with Core i7 CPU@2.67GHz, RAM@24GB,
and MATLAB2016b. The average execution time taken in
one iteration of the ADMM used in the methods are, in our
method: 0.80sec/Mpix, RPCA: 2.13sec/Mpix, and reflection
removal: 16.34sec/Mpix (author’s code). Since the calculations
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(a) (b) (c) (d) (e)

Fig. 3. Simulation results using an anisotropic non-circular pattern. The bottom images are their spectra. The intensity range of spectral images is normalized
for displaying the details.

(a) Original (b) RPCA [1] (c) Li et al. [2] (d) Proposed

Fig. 4. Comparison with related methods. (a) is the observed image (top) and
the ground truth pattern (bottom).

Latent Pattern

Original Latent Pattern

Fig. 5. Results using an actual scanned and shot image.

used in our method are simpler than other methods, our
method achieved fast execution time.

VI. CONCLUSION

In this paper, we presented a method for removing a
pattern artifact component from a degraded image. Since
the amplitude spectra of the pattern image have sparsity, we
characterize it as a mathematical optimization problem using a
mixed norm consisting of the complex-valued norm and the ℓ1
norm. Although not all pattern noise can be removed by this
method, we showed that it has better separation performance

compared to the conventional methods such as RPCA and
reflection component removal.

Finally, we remark that the pattern noise removal prob-
lem considered would be related to cartoon-texture image
decomposition methods that characterize texture by local low-
rank regularization, e.g., [11], [12]. Such methods can handle
pattern noise as texture, and thus might be effective for the
problem. However, we also note that these methods require
singular value decomposition at each iteration to solve the
associated optimization problems, which means that they are
much more computationally expensive than our method.
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