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Abstract—We consider the problem of recovering an unknown
signal observed through a nonlinear model and corrupted with
additive noise. More precisely, the nonlinear degradation consists
of a convolution followed by a nonlinear rational transform.
As a prior information, the original signal is assumed to be
sparse. We tackle the problem by minimizing a least-squares fit
criterion penalized by a Geman-McClure like potential. In order
to find a globally optimal solution to this rational minimization
problem, we transform it in a generalized moment problem, for
which a hierarchy of semidefinite programming relaxations can
be used. To overcome computational limitations on the number
of involved variables, the structure of the problem is carefully
addressed, yielding a sparse relaxation able to deal with up to
several hundreds of optimized variables. Our experiments show
the good performance of the proposed approach.

I. INTRODUCTION

Over the last decade, much attention has been paid to inverse
problems involving sparse signals. A popular approach for
solving such problems consists in minimizing the sum of a
data fidelity term and a regularization term incorporating prior
information. When the observation model is linear and the
noise has a log-concave likelihood, a convex cost function
is obtained. Many efforts have then been dedicated to derive
efficient algorithms able to deal with a large number of
variables, while ensuring convergence to a global minimizer
[1]–[3]. As we will explain now, such a convex formulation
may however be limited for two main reasons.

Firstly, for many real acquisition devices, the actual degra-
dation model is not linear and some nonlinear saturation
effects often arise. A simplified model then results from a
linearization procedure which overlooks these nonlinear be-
haviors in order to make the associated mathematical problem
tractable. For example, standard tools in signal processing such
as the Wiener filter are effective mostly in a linear framework.
For a long time, attempts have been made in order to deal
with more general nonlinear models. For example, one can
mention the works undertaken by using Volterra models [4],
which may be useful in some application areas [5]. Secondly,
convex regularization terms may be limited, especially for
capturing the sparse structure of a signal. Potentials related
to the ℓ1 norm are often employed as surrogates to the natural
sparsity measure, which is the ℓ0 pseudo-norm (count of
the number of nonzero components in the signal). Although

some theoretical works have promoted the use of the ℓ1
norm [6], its optimality can only been established under some
restrictive assumptions. In turn, cost functions involving the
ℓ0 pseudo-norm lead to NP-hard problems for which reaching
a global minimum cannot be guaranteed in general [7]–[9].
Smooth approximations of the ℓ0 pseudo-norm may appear
as good alternative solutions [10]–[13]. However, for most
of the existing optimization algorithms (e.g. those based on
Majorize-Minimize strategies), only convergence to a local
minimum can be expected. One can however mention the
recent work in [14] where a Geman-McClure like potential
was used for deconvolving a sparse signal. Promising results
were then obtained.

In this work, we extend the scope of our preliminary work
in [14] by proposing a novel approach for restoring sparse
signals degraded by a nonlinear model. More precisely, our
contributions in this paper are threefold. First, the proposed
approach is able to deal with degradation models consisting
of a convolution followed by a pointwise transform. The
latter appears as a rational fraction involving absolute values
and, as an extension of [14], real-valued quantities are here
allowed. Such nonlinearly distorted convolution models may
also be encountered in blind source separation [15] and neural
networks [16]. Our second contribution is to allow the use of
a Geman-McClure like regularization with proven global con-
vergence guaranties to a solution of the associated optimization
problem. The last contribution of this work is to devise a
sparse relaxation in the spirit of [17] to cope with the resulting
rational optimization. Since these general rational optimization
methods are grounded on building a hierarchy of semidefinite
programs (SDP), such a relaxation plays a prominent role
in making these approaches applicable to several hundred of
variables as it is common in inverse problems.

In Section II, we state our nonlinear model and define
the optimized criterion. Section III describes the main steps
of our approach. Section IV provides simulation results and
Section V concludes this paper. The set of polynomials in the
indeterminates given by vector x := (x1, . . . , xT ) is denoted
by R[x].
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II. MODEL AND CRITERION

A. Sparse signal model

We consider the problem of recovering a set of unknown
samples given by the vector x := (x1, . . . , xT )

⊤. In our
context, we only have access to some measurements related to
the original signal through a linear transformation (typically,
a convolution) and some nonlinear effects. More precisely, the
observation model reads

y = ϕ(Hx) + n , (1)

where the vector y := (y1, . . . , yT )
⊤ contains the observation

samples, n := (n1, . . . , nT )
⊤ is a realization of a random

independently and identically distributed (i.i.d.) noise vector,
H ∈ RT×T is a given matrix, and ϕ : RT → RT is a
nonlinear function. For simplicity, it is assumed that ϕ applies
componentwise, that is, for every u := (u1, . . . , uT )

⊤, the k-
th component of ϕ(u) is given by [ϕ(u)]k = ϕ(uk). Here, ϕ
models a rational saturation effect, which is parametrized by
δn > 0, and which is given by:

(∀u ∈ R) ϕ(u) =
u

δn + |u|
. (2)

The model (1) appears in the case when the samples stem from
a signal given by yt = ϕ(ht ⋆ xt) + nt for all t ∈ {1, . . . , T}.
In the latter equation, ⋆ denotes the convolution by the filter
with impulse response (ht)t. We assume that the convolution
filter has a finite impulse response (FIR) given by the vector
(h1, . . . , hL)

⊤. Under suitable vanishing boundary conditions,
the matrix H is thus Toeplitz banded as shown below:

H =



h1 0 ... ... ... 0

...
. . . . . .

...

hL

. . .
...

0
. . . . . .

...
...

. . . . . . . . . 0
0 ... 0 hL ... h1


.

One of the main novelty of this work is to exploit the spe-
cific structure of matrix H in order to reduce the computational
cost of the subsequently proposed global optimization method.
Finally, the signal (xt)t∈Z is assumed to be sparse, that is we
simply assume that xt ̸= 0 only for a few indices t.

B. Criterion for recovery

Following a classical approach for estimating x, we mini-
mize a penalized criterion having the following form:

(∀x ∈ RT ) J (x) = ∥y − ϕ(Hx)∥2 + λ
T∑

t=1

ψδ(xt) , (3)

where λ and δ are positive regularization and smoothing
parameters, and ψδ is a Geman-McClure like potential similar
to the one used in [14]:

(∀ξ ∈ R) ψδ(ξ) =
|ξ|

δ + |ξ|
. (4)

The minimization is performed over a compact feasible set
denoted by K and the optimization problem consists in finding

J ⋆ := inf
x∈K

J (x) .

III. RATIONAL MINIMIZATION

To solve J ⋆, we use a methodology similar to [14]. The
differences and novelties are described in the next two sub-
sections: first, we can deal with real-valued quantities, and
second, we exploit the problem structure.

A. Optimization set and absolute values

We here specify the feasible set K. From its description, it
becomes possible to cope with the absolute values in (2) and
(3). First, the optimization set K mentioned above is described
by polynomial inequalities as follows:

K = {x ∈ RT | gi(x) ≥ 0, i = 1, . . . , I}. (5)

Technically, it is required that the above representation of
K provides an algebraic certificate of compactness [18]. In
our practical situation, this is easily satisfied when upper and
lower bounds on the variables (xt)1≤t≤T are available: in this
case indeed, K ⊂ [−B,B]T and hence the polynomials corre-
sponding to the inequalities gt(xt) = −(xt+B)(xt−B) ≥ 0
can be included in the polynomials in (5). Details on these
technical conditions are out of the scope of this paper and can
be found in [18, 19].

Furthermore, we can use the above specification of the
feasible set K to handle absolute values. First, by introducing a
polynomial and its opposite in (5), it is possible to introduce
polynomial equality constraints in K. Then, absolute values
can be considered as follows: for each term |ũ(x)| appearing,
where ũ is a polynomial, add an additional variable u and
impose the constraints u ≥ 0, u2 = ũ(x)2. The methodology
described in Section III-C of this paper can then be applied
with the extended set of variables (x, u).

B. Structure of the problem

Developing the square norm in (3) and substituting all
terms, the criterion J appears as a sum of rational functions,
possibly involving absolute values. The absolute values can be
eliminated using the trick of the previous paragraph: for clarity,
and with no loss of generality, we describe the method when
all quantities are nonnegative and hence no absolute values
appear.

We take advantage of the Toeplitz banded structure of H,
and introduce a sparse1 relaxation of J ⋆. This technique
was introduced in a different context [17]. Define for each
t ∈ {1, . . . , T} the set It = {min{1, t − L + 1}, . . . , t} of

1The notion of sparsity here concerns the SDP relaxation and should not
be confused with the sparsity assumed for the original samples of vector x.

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 167



column indices of H for which row t has nonzero elements.
Developing the square norm in (3), we write J (x) as follows:

J (x) =
T∑

t=1

[
yt − ϕ

(
L∑

i=1

hixt−i+1

)]2
︸ ︷︷ ︸

pIt
(x)

qIt
(x)

+λψδ(xt)︸ ︷︷ ︸
p(xt)
q(xt)

,

with the convention that xt = 0 for t /∈ {1, . . . , T}. In other
words, pIt , qIt are polynomials that depend on the variables
(xk)k∈It only and p, q are univariate polynomials that depend
on xt only. Define the following sets:

(∀t ∈ {1, . . . , T}) Jt = It and Jt+T = {t} .

The sets (Jt)1≤t≤2T satisfy
∪2T

t=1 Jt = {1, . . . , T} and the so-
called Running Intersection Property (RIP), that is for every
t ∈ {2, . . . , 2T}:

Jt
∩(

t−1∪
k=1

Jk

)
⊆ Jj for some j ≤ t− 1 .

Consequently, the methodology in [17] is applicable.

C. Sparse SDP relaxation

Similarly to [14], J ⋆ can be relaxed to a finite dimen-
sional SDP, where each optimization variable corresponds
to a monomial in (x1, . . . , xT ). We briefly sketch the main
steps. First, it can be proved that the original problem is
equivalent to an optimization problem over several finite Borel
measures, which is called a generalized moment problem.
Each measure is then represented by a truncated moment
sequence y. For any such moment sequence, we define the
following linear functional, which replaces any monomial in
a given polynomial f ∈ R[x] by the corresponding moment
value in y:

Ly : R[x] → R

f =
∑

fαx
α 7→

∑
fαyα .

In the relaxation below, Ly(f) will correspond to the value
taken by a polynomial f for a given measure represented by
the moment sequence y. For any order k ∈ N and for multi-
indices α,β of order |α| := α1 + · · ·+ αn ≤ k and |β| ≤ k,
the moment matrix of y is defined by

[Mk(y)]α,β := yα+β ,

and for a given polynomial g ∈ R[x], the localizing matrix
associated with g and y is

[Mk(gy)]α,β :=
∑
γ

gγyγ+α+β .

The two above matrices, will make it possible in the relax-
ation to introduce the conditions such as Mk(y) ⪰ 0 and
Mk(gy) ⪰ 0, which are necessary for y to represent a measure
concentrated on the set where g is nonnegative. Finally, the

kth order sparse SDP relaxation consists in the minimization
problem

P⋆s
k := inf

T∑
t=1

Lzt(pIt) + Lyt(p)

subject to a number of semidefinite positivity constraints and
linear equality constraints (see [17] for mathematical details).
Note in particular that, in order to deal with the fractions
in J (x), the constraints Lzt

(qIt) = Lyt
(q) = 1 on the

denominator values should appear.
With increasing values of k, this yields a hierarchy of SDP

relaxations for which it can be proved [17] that P⋆s
k ↑ J ⋆ as

k → ∞. Moreover, from P⋆s
k , a point x⋆s

k can be extracted,
which is guaranteed to be optimal under certain rank condi-
tions and possibly only approximate otherwise.

The above relaxation is similar to the one in [14]. Based on
the split form of J (x), the moment sequences yt correspond
to monomials involving the variables (xk)k∈Jt which appear in
the respective terms pIt (x)

qIt (x)
. Similarly, the moment sequences

zt correspond to monomials involving xt only, in accordance
to the variable appearing in the terms p(xt)

q(xt)
. Of course, the

same subset of variables may appear in different moment
sequences yt or zt: therefore compatibility conditions are
required, corresponding to equality of moments. This is made
possible by the RIP condition and it justifies that linear
equality constraints are necessary in P⋆s.

Importantly, and in contrast with [14], no moment sequence
involves all variables (xt)1≤t≤T . As a consequence, the semi-
definite positivity constraints in P⋆s

k only involve small subsets
of the whole set of variables (xt)1≤t≤T . This constitutes the
great benefit of this sparse relaxation, allowing us to deal
with a much higher number of variables. A striking example
illustrating this fact is when the criterion is separable and the
terms in J (x) all involve distinct variables.

IV. SIMULATIONS

A. Experimental setup
We have generated samples x from a sparse signal. The

number of samples in x has been set to T = 200, T = 100,
T = 50 and T = 20. We have imposed that exactly 10% of
the samples are nonzero, yielding respectively 20, 10, 5 and
2 nonzero components in x. The amplitudes of the nonzero
components have been drawn according to a uniform distribu-
tion on [−1;−2/3] ∪ [2/3; 1]. Then, this unknown impulsive
signal has been corrupted according to Model (1) with the
nonlinearity given by (2). We have set δn = 0.3 and the noise
n has been drawn according to an i.i.d. zero-mean Gaussian
distribution with standard deviation σ = 0.15. Finally, the
matrix H has been set Toeplitz banded corresponding to FIR
filters of length 3. Several sets of 100 Monte-Carlo realizations
of such data have been generated, both with fixed FIR filter
with impulse responses given by h(a) = [0.1, 0.8, 0.1] and by
h(b) = [0.3871,−0.1887, 0.4242] and with impulse responses
drawn randomly for each Monte-Carlo realization. We have
set empirically λ = 0.15 for the regularization parameter and
δ = 0.01 in the penalty function (4). To obtain an estimate x⋆s

3 ,
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Monte-Carlo realization
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Fig. 1. For all realizations, lower bound and objective value attained by our
method; objective value attained by IHT with different initializations (filter
with random coefficient, T = 200).

we have solved the SDP relaxation P⋆s
3 of order k = 3 from

Section III-C. We are not aware of any other method able to
find the global minimum of (3) and for comparison, we have
used a linearized model: for reconstruction purposes, using
data generated according to (1), we have linearized around
zero the nonlinearity in (2) and have used the well-known ℓ1
penalization.

Finally, we have also implemented a proximal gradient
algorithm based on Iterative Hard Thresholding (IHT) [8]
extended to the nonlinear model. The latter algorithm however
only certifies convergence to a local minimum of the criterion.
Due to non convexity, the local minima are likely to be
different from the global minimum.

B. Performance of the proposed relaxation

Note first that, for the order of relaxation k = 3, we have
been able to consider up to T = 200 samples with the sparse
relaxation used here. This is a significant improvement in
comparison with the results in [14], where the relaxation was
able to deal with only a few tens of variables with an order
of relaxation not greater than 3.

We have plotted on Figure 1 the lower bound provided
by the relaxation P⋆s

3 and the objective value J (x⋆s
3 ) at-

tained when extracting an optimal point from the same order
relaxation. We clearly see that P⋆s

3 ≤ J (x⋆s
3 ), which is

in accordance with the theory. However, equality does not
perfectly hold. This illustrates that the choice k = 3 of
the relaxation order is probably too small for the considered
problem. As a consequence, we propose in next section to
combine our method with a local IHT optimization method.

C. Existence of local minima and results of the proposed
global approach

The IHT algorithm has been initialized with x⋆s
3 , the result

from the linearized model and ℓ1 penalization, y, an all-

zero vector and the true x (the latter initialization would be
intractable in real applications). The average values over all
Monte-Carlo realizations are provided in Table I for T = 200.
Some detailed values, corresponding to randomly drawn filter
coefficients, are plotted in Figure 1, also for T = 200.

The final objective values after convergence of the IHT
optimization clearly depend on the initialization, which ad-
vocates in favor of the existence of several local optima and
emphasizes the importance of considering the problem of
global optimization. In average, the lowest objective value is
obtained by a local optimization initialized either at x⋆s

3 or
at the true x. More importantly, as shown in Table II, the
IHT algorithm seems unable to reach the global minimum
with any of the initializations easily available (ℓ1, y, all-zero
vector). This shows clearly that the proposed relaxation is very
useful in providing an improved initialization point for a local
optimization algorithm.

TABLE I
FINAL VALUES OF THE OBJECTIVE J (x) FOR THE NONLINEAR LOCAL

OPTIMIZATION METHODS.

Opt. method Filter param.
h(a) h(b) random

x⋆s
3 12.181 20.852 16.776

linearized ℓ1 22.032 19.719 20.848
IHT, init. x⋆s

3 7.2900 8.9858 7.8665
IHT, init. ℓ1 10.157 11.186 10.690
IHT, init. y 10.167 12.505 13.144
IHT, init. zero 12.231 15.417 13.392
IHT, init. x 7.1992 7.1578 7.1489

TABLE II
OUT OF 100 MONTE-CARLO REALIZATIONS, NUMBER OF TIMES EACH
INITIALIZATION OF IHT PROVIDES THE SMALLEST OBJECTIVE VALUE

(FILTER h(a) , T = 200).

Num.
samples

Initialization
x⋆s
3 ℓ1 y zero x

20 56 0 1 18 40
50 38 0 0 0 62
100 36 0 0 0 64
200 22 0 0 0 78

D. Results on signal recovery

Finally, we illustrate the ability of our method to estimate
the sought signal. A typical example of the true x, of the
observation vector y and of the reconstructed signal is given
on Figure 2. The estimation error on x has been quantified by
the mean square error 1

T ∥x̂−x∥2 for a given estimate x̂. The
average error and objective values are gathered in Table III and
show poor results are obtained with a linearized model. The
best results have been obtained by IHT initialized by x⋆s

3 . The
result of IHT initialized by the true x is given for information.

V. CONCLUSION

We have considered sparse signals observed through a
nonlinear observation model with additive noise. The class
of nonlinear models that can theoretically be tackled with our
methodology is quite vast, as it includes any rational function,
possibly involving absolute values.
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Fig. 2. Typical original signal x, observations y and recovered signal. The
results presented have been obtained with IHT initialized either by our method
or by a linearized model and ℓ1 penalty.

TABLE III
FINAL AVERAGE MSE FOR THE NONLINEAR LOCAL OPTIMIZATION

METHODS.

Opt. method Filter param.
h(a) h(b) random

x⋆s
3 8.40e-3 1.57e-2 1.29e-2

linearized ℓ1 3.88e-2 3.15e-2 3.38e-2
IHT, init. x⋆s

3 8.95e-3 1.45e-2 1.22e-2
IHT, init. ℓ1 1.30e-2 2.14e-2 1.95e-2
IHT, init. y 2.60e-2 2.34e-2 3.96e-2
IHT, init. zero 5.20e-2 6.60e-2 5.57e-2
IHT, init. x 5.18e-3 4.08e-3 4.49e-3

The starting point of our reconstruction approach involves
the minimization of a criterion which is the sum of a fidelity
term and a penalization. The fidelity has been chosen as
a square norm and the penalization as a Geman-McClure
potential approaching the ℓ0 norm. It has been known for long
that such problems are particularly hard to solve. However,
with the adopted formulation and approximation, the optimiza-
tion problem is rational, which opens up the possibility to
use recent methodologies with theoretical global convergence
properties.

The desirable convergence properties of the latter method-
ologies come at the cost of solving a high dimensional SDP.
With state of the art SDP solvers, this limits the approach
to small size problems. To overcome these computational

limitations, we have exploited a particular model structure. In
so doing, we have been able to deal with up to 200 variables.
More specifically, the proposed methodology seems promising
in order to provide an initialization point to a local algorithm
such as IHT. Finally, the results in terms of reconstruction
seem promising.
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