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Abstract—The boost of signal processing on graph has recently
solicited research on the problem of identifying (learning) the

graph underlying the observed signal values according to given

criteria, such as graph smoothness or graph sparsity. This paper
proposes a procedure for learning the adjacency matrix of a

graph providing support to a set of irregularly sampled image
values. Our approach to the graph adjacency matrix learning

takes into account both the image luminance and the spatial
samples’ distances, and leads to a flexible and computationally

light parametric procedure.We show that, under mild conditions,
the proposed procedure identifies a near optimal graph for

Markovian fields; specifically, the links identified by the learning
procedure minimize the potential energy of the Markov random

field for the signal samples under concern. We also show, by
numerical simulations, that the learned adjacency matrix leads

to a higly compact spectral wavelet graph transform of the so
obtained signal on graph and favourably compares to state-

of-the-art graph learning procedures, definetly matching the
intrinsic signal structure.

I. Introduction

The boost of signal processing on graph (SoG) has re-

cently solicited research on the problem of graph learning,

i.e. of identifying the graph underlying the observed data

values according to given criteria, such as graph smoothness

or graph sparsity [1], [2]. In fact, except for specific SoG

applications where the data are univocally associated to an

underlying graph structure -e.g. in sensor networks where the

nodes correspond to spatial sensor locations and the links to

actual communication channels between sensors-, the graph

structure must be designed in accordance to the observed signal

and different graph learning procedures can be envisaged.

In random geometric graphs, links are established based on

nodes distances, in a deterministic or probabilistic fashion

[3]. In mesh-based image representation, the graph is straight-

forwardly induced by the topology of the mesh [4], since

the nodes and the signal samples at the nodes are extracted

at the vertices of the mesh and the node links reproduce

the mesh grid; this is exemplified in Figs.1,2(a)-(c), where

two different images, a depth map and a nevus image, are

displayed, together with the meshes obtained by Delaunay

triangulation and the corresponding graphs. Model-based graph

learning has been recently analyzed in [1], where the authors

resort to a parametric smooth signal model and develop a

procedure for learning the graph Laplacian matrix via an

alternating minimization algorithm jointly enforcing the SoG

smoothness and the Laplacian properties of sparsity and semi-

definite positiveness. In [2], the authors propose an iterative

Laplacian matrix learning algorithm that, stemming on the

knowledge of which edges are active, updates one row/column

of the precision matrix at a time by solving a non-negative

quadratic program and superimposing prior constraints on the

Laplacian matrix structure.

This paper addresses the problem of building a suitable

graph given a set of irregularly sampled image values. Our

approach to adjacency matrix construction takes into account

both the image luminance and the spatial samples’ distances,

and leads to a parametric procedure. We show that, in the

limit as the weight of the luminance values overcomes that

of the inter-node distances in the adjacency matrix learning,

the procedure provides the optimal graph for Markovian fields;

specifically, the generated signal on graph achieves a minimum

of the Markovian field potential energy for the signal samples

under concern. Finally, we analyze the impact of the graph

selection on the spectral wavelet SoG representation and we

show, by numerical simulation results, that the spectral wavelet

transform associated to the graph leads to a compact signal

representation, and the learning algroithm favourably compares

to state-of-the-art procedures.

II. ID-LD adjacency matrix learning

Let us consider a bi-dimensional signal sampled at N spatial

locations xi, yi, i = 0, · · ·N − 1, where it assumes the values
fi, i = 0, · · ·N − 1, and let us denote as f = [f0 · · ·fN−1]

T

the vector collecting the signal samples. We are interested in

building the undirected graph underlying the signal f . The

graph G is defined as the triplet G = (N , E , A) where N
represents the set of graph nodes corresponding to the spatial

sampling locations, E the set of edges (links) between nodes,
and A is the unknown adjacency matrix, whose elements aij

are real or binary values representing the weight of the graph

links.

Here, we propose a procedure for learning the adjacency

matrix A given the set of N samples f acquired in known

spatial locations. The procedure accounts both for geometric

constraints as well as for graph smoothness. Specifically, the

adjacency matrix is built based on the spatial Inter-nodes

Distances and Luminance Differences (ID-LD).

To elaborate, let us consider the following representation of

the image samples in R3:

P
(α)
i = (xi, yi, αfi), i = 0, · · ·N − 1 (1)

being α > 0 ∈ R a real positive parameter.

We associate the generic element aij of the ID-LD adjacency

matrix A, i.e. the weight of the link between the i-th and j-th

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 395



(a) (b)

0

50

100

150

200

250

(c)

Fig. 1. Example of depth map, a mesh built on it and the corresponding Signal on Graph (SoG).
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Fig. 2. Example of biomedical image (nevus), a mesh built on it and the corresponding Signal on Graph (SoG).

nodes, to the Euclidean distance between P
(α)
i and P

(α)
j . To

this aim, we define the function

wσw
(P

(α)
i , P

(α)
j )=e

−
(xi−xj)2+(yi−yj)2+α2(fi−fj )2

2σ2
w (2)

measuring the distance between the points as well as their dif-

ference in luminance. We then propose the following definition

of the ID-LD adjacency matrix element aij:

aij =

{

wσw
(P

(α)
i , P

(α)
j ) i 6= j, wσw

(P
(α)
i , P

(α)
j ) ≥ θ

0 otherwise
(3)

A few remarks are in order. Firstly, the weights’ definition

in Eq.3 differs both from the definition adopted in random

geometric graphs, accounting only for the distances, and the

definition adopted Gaussian weighted graphs, accounting only

for the signal value. Yet, the definition encompasses these two

cases for particular values of α, namely α = 0, α → ∞,
respectively, and the amplifying factor α in Eq.1 allows to nat-
urally and smoothly switch between considering the geometric

distances of the points and the differences in the observed lu-

minance. Secondly, the thresholding operated in Eq.3 allows to

control the graph connectivity by suitably selecting the number

of nonzero elements in A. Thirdly, the ID-LD adjacency matrix

A in Eq.3 has an interesting interpretation. When the signal

f is considered as a realization of a Markov Random Field

over an irregular lattice, the neighboring system induced by

the graph topology implied by the ID-LD adjacency matrix

achieves the minimum potential energy. This is shown in the

next subsection.

We exemplify the results of the ID-LD adjacency matrix

learning in Fig.3(a)-(c), where we plot as red points the signal

samples of Fig.2(c), corresponding to the luminance values at

the vertices mesh of Fig.2(b), as in Eq. 1, for α = 1, 2.5, 5
respectively; for better visualization, the spatial scale has been

normalized so that the width of the visualization region is

equal to 1 for the three cases. Fig.3(a)-(c) also shows as blue

lines the graph links obtained by applying the adjacency model

proposed in Eq.3, by setting σ equal to the 12.5% of the spatial

coordinates range and θ equal to 0.85.

A. ID-LD Adjacency Matrix and Markovian SoGs

Let us us now recast the signal f associated to a set of

graph nodes as a realization of a Markov Random Field (MRF),

which is a powerful model frequently adopted both for natural

images [5] and textures [6]. The MRF under concern is such

that i) the graph nodes represent the sites of the (irregular)
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Fig. 3. Example of graphs built using a) α = 1.0,σ = 0.125, θ = 0.85, b)
α = 2.5,σ = 0.125, θ = 0.85 c) α = 5.0,σ = 0.125, θ = 0.85.

lattice over which the field is defined, and ii) the graph

adjacency matrix induces the neighborhood system of theMRF.

Specifically, we define the neighborhood η
(A)
i of the i-th node

as the set of nodes j for which a link to i exists, i.e.

η
(A)
i = {j s.t. aij 6= 0} (4)

Besides, let us refer to clique systems1 made up by two pixels-

cliques, namely c = {(fi, fj) s.t. aij 6= 0}, and clique
potential functions V (c) which are increasing with respect to
the Euclidean distance between fi, fj , i.e. V (c) = V (|fi−fj |).
Examples of such clique potential function can be found in

the literature [5], and include, but are not limited to, quadratic

1A clique is a set of pixels that belong to each other neighborhood.

functions of the form V (|fi−fj |) =
(fi−fj)2

σ2
v

as well as expo-

nential functions of the form V (|fi−fj |) = 1−2 exp
−

(fi−fj )2

σ2
v .

By definition of MRF, the local conditional probability of a

sample satisfies the property p(fi|fj , ∀j 6= i) = p(fi|fj, ∀j ∈

η
(A)
i ). According to the Hammersley-Clifford theorem, this
local property reflects into the following global property: the

a priori probability measure of the MRF realization f is

computed in accordance to the Gibbs distribution:

p(f ; η(A)) =
1

Z
exp

{

−U(f ; η(A))
}

where Z is a normalization factor, and U(f ; ; η(A)) is the
potential energy function defined as

U(f ; η(A)) =
∑

i

∑

j∈η
(A)

i

V (|fi − fj|)

where the first sum spans the set of nodes, the second sum

over the i-th node neighbors, i.e. the nodes forming a clique
with the i-th node.
We show here that, under mild hypotheses, when the ID-

LD adjacency matrix A in Eq.3 is computed, it induces an

associated neighborhood system η(A) which minimizes the

potential energy function U(f ; η(A)) of the signal f under the
constraint of an assigned number of links.

Theorem: Let us consider the graph configuration achieved

by considering the ID-LD adjacency matrix in Eq.3, for a given

θ. Let us denote by Nθ the resulting number of links. In the

limit for α≫ 1, the ID-LD adjacency matrix A in Eq.3 leads

to a neighborhood system η
(A)
i which minimizes the potential

energy function U(f ; η(A)) relative to the signal f .
Proof.: With the afore presented positions, the potential

energy function specifies as

U(f ; η(A)) =
∑

i

∑

i,j; aij 6=0

V (|fi − fj |)

According to Eq.3, by construction any fi, fj pair such that

aij 6= 0 satisfies the inequality

(fi − fj)
2 ≤ ln(θ) 2σ2/α2,

whereas (fi − fj)
2 > ln(θ) 2σ2/α2 for any aij = 0. Under

the constraint of constant number of links Nθ , a new graph

link can be added iff a link is removed. We recognize that

sup{(fi − fj)
2, aij 6= 0} < inf{(fi − fj)

2, aij = 0}

i.e., due to the ID-LD definition, all the pixel pairs correspond-

ing to existing graph links have uniformly lower distances than

those not connected by graph links. Thereby, no link can be

removed from the graph to add a novel one without increasing

the energy associated to the graph configuration.

This leads to an interesting interpretation of the ID-LD

matrix A in Eq.3 as the adjacency matrix minimizing the

potential energy of the actual signal configuration:

AID−LD = arg min
C

U(f ; η(C))
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This result suggests [7] that the ID-LD matrix has the capabil-

ity of yielding a compact spectral representation of the SoG,

as we experimentally assess in the next Section.

III. Experimental results

In this Section we presents numerical results in order to

assess the ability of the graph represented by the ID-LD

adjacency matrix A to capture the graph structure underlying
the visual data f .

Firstly, we present a toy example illustrating the relation

between the adjacency matrix in Eq.3 of a graph and the

potential energy of the associated signal. Specifically, in the

first row of Fig.4 we show the adjacency matrix coefficients

corresponding to each and every (fi, fj) pair (α = 5, σw =
10, θ = 0.5); for clarity sake, on the left we highlight (solid
green line) the graph edges and the corresponding aij , while

on the right we highlight (red dotted lines) the pairs not

connected by edges, having aij = 0. In the second row we
show the corresponding clique potential functions computed as

V (c) = 1 − 2 exp−(fi−fj)
2/σ2

v . In this toy case we recognize

that the ID-LD adjacency matrix identifies the links, and hence

the neighborhood system, that minimizes the potential energy

relative to the assigned signal configuration. In fact, no link

can be substituted to an existing one without increasing the

energy U(f ; η(A)) =
∑

i

∑

j∈η
(A)
i

V (fi, fj) associated to the

graph configuration.

Secondly, in order to support the claim that the ID-LD

adjacency matrix computed as in Eq.3 captures the underlying

signal structure, we show that the spectral wavelet transform

(SGWT) [8] of the associated graph is extremely compact. The

SGWT is built by i) performing the spectral decomposition of

the discrete graph Laplacian L to identify the eigenvalues and
eigenvectors λl,u

(l), l = 0 · · ·N − 1, ii) selecting the scales
of interest by suitably windowing the Laplacian eigenvalues λ,
and iii) finally localizing the frequency content around different

graph nodes by means of an indicator function. In formulas,

the SGWT basis element referring at scale j and node n is a
signal on graph assuming on the m-th node the value

ψ(j,n)
m =

N−1
∑

l=0

g(j λl)u
(l)
n u(l)

m

where g(·) represents a suitable windowing function. Fol-
lowing the SGWT theoretical analysis in [8] and its imple-

mentation in [11], we consider here SGWT reconstruction of

the graphs in Fig.3 by truncating the spectral graph wavelet

coefficients to a restrained number of k scales out of the K
leading to perfect reconstruction. In Tables I,II we report the

SGWT mean square reconstruction error obtained when using

the proposed adjacency matrix for K = 5 and k from 1 to
4. For comparison sake, we also consider the mean square
error for the graphs in Figs.1 , 2. We recognize that adopting

the proposed approach significantly improves the compression

efficiency of the SGWT. The reason why this occurs is because

the graph tightly matches the actual signal f smoothness, since

TABLE I
Mean square Value of the SGWT Reconstruction Error
using wavelet coefficients up to scale k (Nevus image,

σ = 0.125, θ = 0.85)

SGWT scale k = 1 k = 2 k = 3 k = 4
Proposed α = 5 3887 1537 200 6

Mesh-based 54845 21842 9966 242

TABLE II
Mean square Value of the SGWT Reconstruction Error

using wavelet coefficients up to scale k (Depth Map,
σ = 0.125, θ = 0.85)

SGWT scale k = 1 k = 2 k = 3 k = 4
Proposed α = 5 78958 37648 14548 319

Mesh-based 1279404 824045 414240 7911

TABLE III
Fmeasure for the ID-LD matrix and the method in [1].

Number of communities P = 2 P = 3 P = 4 P = 5
Proposed α = 5 0.74 0.66 0.62 0.57

Method in [1] 0.67 0.58 0.51 0.49

it induces links among similar signal values, while controlling

the geometrical graph complexity.

Furthermore, in Fig.5 we show the SoGs obtained using

the adjacency matrix A as in Eq.3 on the images in Figs.1,

2. We recognize that the ID-LD matrix clearly induces links

between homogeneous regions and inhibits links across image

discontinuities.

Finally, we test the proposed graph learning algorithm on

a random graph, built by N = 25 nodes belonging to

P communities, spatially distributed in equiangularly spaced

circular regions with centers on the unit circle and unitary

radius; we set the intra-community edge probability 0.8 and
inter-community edge probability 0.2 and nonzero weights
uniformly distributed in [0, 1]; the signal samples on nodes
within communities are independently uniformly distributed

in the community dependent ranges [p, p + 1] p = 1, · · ·P .
We compare the graph learning results with those obtained by

using the method GL-SigRep2 in [1]. Specifically, Table III

reports the F-measure, defined as the harmonic mean of the

recall and precision performances of the proposed method and

that in [1], averaged over 20 runs and for different values

of P . The ID-LD adjacency matrix well captures the signal
smoothness, well performing w.r.t. [1].

To sum up, the ID-LD adjacency matrix provides a theoret-

ically sound tool for describing the graph structure underlying

irregularly sampled image values. Besides, the ID-LD approach

nicely induces a compact SGWT representation, which in turns

can be adopted in many signal on graph processing procedures.

IV. Conclusion

In this paper we have presented a procedure for graph learn-

ing given a set of irregularly sampled image values. Specifi-

2The GL-SigRep parameters have been selected for best performance at

α ≈ 10−4, β ≈ 10−5.
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Fig. 4. Toy example of graph built using the ID-LD adjacency matrix A in Eq.3: (a) adjacency matrix coefficients aij and (b) potential functions V c(|fi−fj |)
on each pair (i, j).
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Fig. 5. Example of graphs built using the proposed graph construction
algorithm α = 5.0,σ = 0.125, θ = 0.9.

cally, we propose a light and flexible parametric approach to

computing the adjacency matrix by taking into account both

the spatial sampling location distance and the difference in

luminance. We also show that the learned adjacency matrix

minimizes the potential energy of the actual signal configu-

ration in accordance to a Markovian signal model. Finally,

we experimentally show that the adjacency matrix yields a

compact spectral representation of the SoG and favourably

compares to state-of-the-art graph learning procedures.
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