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Abstract—Binaural multi-microphone noise reduction methods
aim at noise suppression while preserving the spatial impres-
sion of the acoustic scene. Recently, a new binaural speech
enhancement method was proposed which chooses per time-
frequency (TF) tile either the enhanced target or a suppressed
noisy version. The selection between the two is based on the
input SNR per TF tile. In this paper we modify this method
such that the selection mechanism is based on the output SNR.
The proposed modification of deciding which TF tile is target-or
noise-dominated leads to choices, which are better aligned with
simultaneous masking properties of the auditory system, and,
hence, improves the performance over the initial version of the
algorithm.

Index Terms—Binaural hearing aids, noise reduction, simulta-
neous masking.

I. INTRODUCTION

The rapidly increasing communication capabilities between
small portable devices make the notion of binaural noise reduc-
tion (BNR) [1] increasingly tractable for wireless collaborative
hearing aids (HAs) [2]. BNR methods aim at acoustic noise
suppression, using the microphones from both HAs, without
altering the spatial impression of the acoustic scene.

Typically, BNR methods consist of two beamformers (one
at the left and one at the right HA) and, optionally, a post-filter
applied to the outputs of the two beamformers for further noise
suppression [1]. The BNR methods can be roughly grouped
into two main categories: a) methods that require estimates of
the relative acoustic transfer functions (RATFs) of all present
sources (e.g., [3]–[7]), and b) methods which require only the
estimated RATF of the target (e.g., [8]–[11]). In this paper we
focus on the second category of BNR methods mainly due to
the practicality of only relying on the target RATF.

The binaural minimum variance distortionless response
(BMVDR) beamformer [5] consists of two MVDR beam-
formers [12], [13] and requires only an estimate of the noise
cross-power spectral density matrix and the RATF of the
target. It provides the maximum noise reduction performance
within the class of binaural linearly constrained distortionless
minimum variance beamformers [5], [6]. However, this is at
the cost of distorting the binaural cues of the interferers [5],
[6], which will coincide with the binaural cues of the target
after processing [5].

This work was supported by the Oticon Foundation and the Dutch Tech-
nology Foundation STW.

The BMVDR-N method, initially proposed in [8] and fur-
ther investigated in [14], combines the output of the BMVDR
with a portion of the noisy unprocessed signal to preserve
the binaural cues of the noise. A slightly different approach
was presented in [10], referred to as the selective binaural
beamformer (SBB). This method uses either the BMVDR
output or a suppressed version of the unprocessed noisy
acoustic scene, depending on whether the target or the noise is
dominant in a time-frequency (TF) tile. This classification of
target-dominant and noise-dominant TF tiles is accomplished
using an estimate of the input SNR.

All aforementioned approaches have in common that they
intend to preserve the spatial cues of all sources without
taking the notion into account that some sources are actually
inaudible after processing. In this paper we introduce the idea
of speech enhancement with binaural cue preservation only
of the sources that are audible at the output of the filter. The
general advantage of this approach is that degrees of freedom
which in traditional approaches are assigned to cue preserva-
tion of sources, which turn out to be inaudible after processing
(and hence masked) are now released and maybe assigned to
noise reduction. More specifically we apply this concept to a
modification of the SBB approach. Instead of using the input
SNR, we use an estimate of the BMVDR output SNRs at left
and right ears [15] for the binary classification. This allows
us to better control the characteristics of the noise reaching
the ears of the user. Moreover, the proposed method is better
aligned with masking properties than the SBB method. If
the noise, after processing with the BMVDR beamformer, is
inaudible in a TF tile, there is no need to preserve its binaural
cues in this specific TF tile and, therefore, the maximum
possible noise reduction is achieved by applying the BMVDR.
On the other hand, if the noise after processing is audible, the
binaural cue distortions introduced by the BMVDR may be
audible and, therefore, a scaled version of the noisy acoustic
scene is used instead.

II. NOTATION AND SIGNAL MODEL

We assume for convenience that the two HAs have an equal
number of m microphones with M = 2m microphones in
total. Without any loss of generality we assume that there
is a single target point source and one interferering point
source present in the acoustic scene. Stacking all microphone
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frequency-domain elements into vectors, we have the follow-
ing signal model for a single TF tile

y(t, f) = x(t, f) + n(t, f) + v(t, f)︸ ︷︷ ︸
z(t,f)

∈ CM×1, (1)

where y(t, f), x(t, f), n(t, f), v(t, f) and z(t, f) are the
noisy, target, interferer, background noise and overall noise
vectors for the DFT bin f and time frame t, respectively.
The 1-st and the M -th microphones are selected as reference
microphones1 and the corresponding elements of all vectors in
Eq. (1) have subscripts L and R, respectively, for notational
convenience. Note that x(t, f) = a(t, f)s(t, f) and n(t, f) =
b(t, f)u(t, f), where a(t, f) and b(t, f) are the acoustic
transfer functions (ATFs) of the target and the interferer,
respectively, while s(t, f) and u(t, f) are the target signal and
interfering signal at the original positions, respectively.

The BNR methods consists of two filters wL(t, f),
wR(t, f) ∈ CM×1 that are applied to the noisy vector y(t, f),
obtaining the following two outputs

x̂L(t, f) = wH
L (t, f)y(t, f), x̂R(t, f) = wH

R (t, f)y(t, f),

where wL(t, f), and wR(t, f) are estimated using all micro-
phone recordings from both HAs.

A. Binaural Spatial Information Measures

The binaural spatial information for point sources is mea-
sured in terms of the interaural level differences (ILDs) and
the interaural phase differences (IPDs). The input/output ILDs
and IPDs of the interferer for a single TF tile are given by2

IPDin
n = ∠

bL
bR

and IPDout
n = ∠

wH
L b

wH
Rb

, (2)

ILDin
n =

∣∣∣∣ bLbR
∣∣∣∣2 and ILDout

n =

∣∣∣∣wH
L b

wH
Rb

∣∣∣∣2 . (3)

Similar expressions to Eqs. (2) and (3) exist for the target
source. In addition, we quantify binaural spatial characteristics
of the background noise in terms of the input and output
magnitude square coherence (MSC) [5], [14] given by

MSCin =

∣∣∣∣∣∣ cin
LR√(

cin
LL

) (
cin
RR

)
∣∣∣∣∣∣
2

, MSCout =

∣∣∣∣∣ cout
LR√

(cout
LL) (c

out
RR)

∣∣∣∣∣
2

,

(4)
respectively, where cin

LR = eTLPveR, cin
LL = eTLPveL,

cin
RR = eTRPveR, cout

LR = wH
LPvwR, cout

LL = wH
LPvwL,

cout
RR = wH

RPvwR, Pv is the cross-power spectral density
matrix of the background noise for a single TF tile, eTL =
[1 0, · · · , 0] and eTR = [0, · · · , 0 1]. A desired property of

1The BNR methods aim at preserving the binaural cues of all sources with
respect to the reference microphones.

2These measures/quantities as well as other measures/quantities introduced
in the sequel of the paper are time-frequency varying, however for notational
convenience the TF indices (t, f) in some occasions are omitted.

a BNR method is to have small MSC, IPD and ILD errors,
defined as

MSCerror(t, f) =
∣∣MSCout(t, f)−MSCin(t, f)

∣∣ , (5)

IPDerror
n (t, f) =

∣∣IPDout
n (t, f)− IPDin

n(t, f)
∣∣ /π, (6)

ILDerror
n (t, f) =

∣∣ILDout
n (t, f)− ILDin

n(t, f)
∣∣ . (7)

It is only relevant to measure the aforementioned spatial errors
of the residual noise in a TF tile, (t, f), when the residual
noise is audible at the output. To reflect to which extent the
processed noise is masked by the processed target we apply a
weighting to the ILD, IPD and MSC errors.

The weights are computed based on the simultaneous mask-
ing principle [16] as follows. First the k-th critical band SNR
(CBSNR) output with respect to the left and right reference
microphones are computed. The left CBSNR is given by

CBSNRk,L(t) =

∑
f∈CBk

wH
L (t, f)Px(t, f)wL(t, f)∑

f∈CBk
wH
L (t, f)Pz(t, f)wL(t, f)

, (8)

where CBk denotes the index set of DFT bins corresponding
to the k-th critical band, and Px(t, f) is the cross-power
spectral density matrix of the target at the TF tile (t, f). A
similar expression exists for the right CBSNR, CBSNRk,R(t).
Then, the weights associated with the k-th critical band are
computed. Specifically, the weights for the left reference
microphone are given by

φk,L(t) =


1, CBSNRk,L(t) ≤ λ
1− CBSNRk,L(t)−λ

ρ−λ , λ < CBSNRk,L(t) < ρ

0, CBSNRk,L(t) ≥ ρ
,

(9)
where λ = −4 dB and ρ = 24 dB are the noise-tone and
tone-noise masking thresholds [16]. If CBSNRk,L(t) ≥ 24,
the target masks completely the noise at the left reference
microphone in the k-th critical band, while if CBSNRk,L(t) ≤
−4, the noise completely masks the target [16]. The weights
at the right reference microphone are computed as in Eq. (9),
but using CBSNRk,R(t) instead of CBSNRk,L(t).

The average masking-weighted spatial information error
measures for the left reference microphone are defined as

AvMSCerror
L =

∑T
t=1

∑N
k=1 φk,L(t)

∑
f∈CBk

MSCerror(t, f)∑T
t=1

∑N
k=1

∑
f∈CBk

φk,L(t)
,

AvIPDerror
L =

∑T
t=1

∑N
k=1 φk,L(t)

∑
f∈CBk

IPDerror
n (t, f)∑T

t=1

∑N
k=1

∑
f∈CBk

φk,L(t)
,

AvILDerror
L =

∑T
t=1

∑N
k=1 φk,L(t)

∑
f∈CBk

ILDerror
n (t, f)∑T

t=1

∑N
k=1

∑
f∈CBk

φk,L(t)
,

with T the number of time-frames and N the number of
critical bands. Similar expressions exist for the right reference
microphone.

III. PROPOSED METHOD

Similarly to the SBB method [10], the proposed method
consists of two processing phases: a) the classification phase
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of TF tiles into target-dominant and noise-dominant, and b)
the enhancement phase where the BMVDR is applied to the
target dominant TF-tiles, while in the noise-dominant TF tiles
a scaled (with 0 ≤ g ≤ 1) version of the noisy signal is used
in both HAs. Let the left and right input narrowband SNRs
(NBSNRs) be given by [15]

ηin
L =

eTLPxeL
eTLPzeL

, ηin
R =

eTRPxeR
eTRPzeR

, (10)

respectively. The left and right BMVDR output NBSNRs are
given by [15]

ηout
L = ηin

L

(
aHLP−1L aL

)
, ηout

R = ηin
R

(
aHRP−1R aR

)
, (11)

respectively, and aL = (1/aL)a, aR = (1/aR)a, P−1L =
Pz,(1,1)P

−1
z , and P−1R = Pz,(M,M)P

−1
z , where Pz,(1,1) and

Pz,(M,M) are the first and last diagonal elements, respectively,
of Pz. The filters of the proposed method at the left and right
HAs for a single TF tile are given by

wProp.,L =

{
wMV,L, ηout

L ≥ τ , and ηout
R ≥ τ

geL, otherwise
, (12)

wProp.,R =

{
wMV,R, ηout

L ≥ τ , and ηout
R ≥ τ

geR, otherwise
, (13)

with wMV,L and wMV,R the left and right BMVDR filters,
respectively, ηout

L and ηout
R the output NBSNRs at the left and

right reference microphones, respectively, and τ the threshold
value which is fixed over frequency and time. The BMVDR
filters are given by [5]

wMV,L =
P−1z aa∗L
aHP−1z a

, wMV,R =
P−1z aa∗R
aHP−1z a

, (14)

with Pz the cross-power spectral density matrix of the total
noise, and aL and aR the two reference elements of a.

A. Improvements of the SBB method

In our evaluation, we compare our proposed method to
an improved version of the SBB method. The improvements
consider two aspects. First, unlike the original SBB [10]
which uses only one input NBSNR in the classification stage,
our implementation of SBB uses both ηin

L and ηin
R in order

to guarantee target dominance in both ears. Secondly, in
the original SBB method [10], the scaling parameter g was
selected as

g = min

(
1

wH
MV,LPzwMV,L

,
1

wH
MV,RPzwMV,R

)
. (15)

Computing g with Eq. (15) might, in some situations, boost
the noise. Instead, in this paper we select g as

g = min

√wH
MV,LPzwMV,L

eTLPzeL
,

√
wH

MV,RPzwMV,R

eTRPzeR

 , (16)

in both the proposed and the SBB methods.
As in [10] we use an average g (computed across the

noise-dominated DFT bins) for each time-frame for both the

proposed and the SBB methods to mitigate coloration of the
residual noise. Hence, g is time-varying but constant over
frequency.

B. Basic Principle

There are two main reasons to use ηout
L and ηout

R (the
proposed method) instead of ηin

L and ηin
R (the SBB method), in

the classification stage. First, the main goal of the proposed
method is to achieve the maximum possible noise suppression,
without altering the binaural cues of the audible processed
noise. Therefore, if the processed noise is masked by the
processed target, there is no reason to preserve any binaural
cues of the noise and, then, the largest possible noise reduction
is achieved by using the BMVDR output.

Secondly, judging whether the noise is masked by the target
is easier if this is done after processing (based on ηout

L and ηout
R )

than before processing (based on ηin
L and ηin

R). This is because,
after processing, the binaural cues of the noise coincides with
the binaural cues of the target and one can use the monaural
simultaneous masking principle described in [16]. Moreover,
after processing, masking becomes independent of the spatial
layout of the sources in the acoustic scene.

Based on the aforementioned two facts, the proposed
method will be more robust than the SBB method to changing
acoustical scenarios assuming that a fixed threshold τ is used
in both methods. This will be shown in Sections III-C, III-D.

C. Example 1: Point Noise Source

Fig. 1 demonstrates the difference between the proposed
method and the SBB method, for a synthetic speech shaped
target source in the front (0 degrees), an interfering speech
shaped noise source to the right (-80 degrees) and a small
amount of microphone self noise. Figs. 1(a) and 1(b) depict
the estimated input and output NBSNRs at the left and right
reference microphones, respectively. Figs. 1(c) and 1(d) show
the AvIPDerror

L and AvIPDerror
R of the interferer vs. the output

segmental SNR (SSNR) for the two methods, respectively,
over a threshold value, τ , ranging from −50 dB to 50 dB
with a step-size of 0.5 dB. Figs. 1(e) and 1(f) show the
AvILDerror

L and AvILDerror
R of the interferer vs the output SSNR,

respectively, for the same range of τ values. The output SSNR
at the left reference microphone is defined as

SSNRout
L =

1

T

T∑
t=1

10log10
||qt,L||22

||q̂t,L − qt,L||22
, (17)

with qt,L the time-frame t of the clean target signal at the left
reference microphone, q̂t,L its estimate. A similar expression
holds for the SSNRout

R .
Let us examine four interesting τ values for this specific

example. If τ > 29 dB, both SBB and the proposed method
will not achieve any noise suppression, but they will simply
scale the noisy signal by g. This is because, ηin

L, η
in
R, η

out
L , ηout

R <
29 dB for all frequency bins. Thus, the values of the perfor-
mance curves in Figs. 1(c,d,e,f) corresponding to τ > 29 dB
will be in the left bottom corner.
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If τ = 22.5 dB, most parts of the ηout
L , ηout

R curves will
be above τ = 22.5 dB, while all the frequency bins of the
curves ηin

L, η
in
R will be below τ = 22.5 dB. This means that

the proposed method will achieve some noise reduction, while
the SBB method will not suppress the noise at all. Moreover,
since τ = 22.5, the processed noise in all the frequency bins
that correspond to ηout

L > 22.5, ηout
R > 22.5 will be almost

inaudible and, therefore, the weighted average binaural cue
errors will be approximately zero. In conclusion, a) none of
the methods caused any audible binaural cue errors, b) the
proposed method achieved some noise reduction, while the
SBB method did not achieve any noise reduction. In Figs.
1(c,d,e,f), the performances for τ = 22.5 dB are shown with
a red � marker and a blue ◦ marker for the proposed method
and the SBB method, respectively.

For τ = 2 dB there will be some frequency bins (in the
region 7-8 kHz) of ηin

L , and ηin
R that will be above τ = 2 dB as

well. The number of these frequency bins will be much less
than the number of the frequency bins of ηout

L , ηout
R that will

be above τ = 2 dB. Thus, the proposed method will achieve
larger amount of noise reduction. Both methods will cause
audible binaural cue errors for τ = 2.

For values τ < −8 dB both methods will have identical
performance, i.e., both methods will apply the BMVDR beam-
former to all frequency bins. This corresponds to the top right
corner (marked with a black star), in Figs. 1(c,d,e,f).

It is clear that the proposed method achieves a better output
SSNR than the SBB for many values of AvILDerror

L , AvILDerror
R ,

AvIPDerror
L and AvIPDerror

R errors, in this acoustic scenario.

D. Example 2: Diffuse Noise

Similarly to Fig. 1, Fig. 2 shows the difference between
the proposed method and the SBB method when there is a
target speech shaped source at the front (0 degrees), a diffuse
noise field and a small amount of microphone self noise.
As mentioned in Section II-A, a proper measure for binaural
spatial distortions in diffuse noise fields is the AvMSCerror

L and
AvMSCerror

R errors. Therefore, in Fig. 2, we use the AvMSCerror
L

AvMSCerror
R errors to show the performance difference between

the two methods.
It is worth noting that in Figs. 2(a,b) the curves ηout

L and
ηin
L have very similar structure, i.e., they are approximately

vertically shifted. The same applies also for the curves ηout
R

and ηin
R. This means the two methods will give more or less

identical SSNR for any AvMSC error. This can be observed
in Figs. 2(c,d), were the performance curves are very similar.

IV. SIMULATIONS

In this section, the proposed method is compared with the
SBB method [10] for τ = −50 : 0.5 : 50 dB, and the
BMVDR-N method [8], [14] with N = 0 : 0.1 : 1. The
comparison is done in two different noisy acoustic scenarios.
In the first scenario the noise component is a single interferer
(a male talker) on the right of the HA user (at −80 degrees).
In the second scenario the noise component is diffuse noise
which is created using different speech shape noise realizations
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Fig. 1. Simulation example 1 comparing the proposed (red) with the BSS
(blue) method and the BMVDR (black star). For τ = 22.5, the performance
of the proposed and the BSS method is illustrated with a red � marker and
a blue ◦ marker, respectively.
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Fig. 2. Simulation example 2 comparing the proposed (red) with the BSS
(blue) method and the BMVDR (black star).

from 72 different angles around the head. In both scenarios,
the target is a female talker positioned in the front (i.e., 0
degrees) of the HA user, and the microphone self-noise (in all
microphones) is 50 dB smaller with respect to the target signal
at the left reference microphone. In both simulated scenarios,
we used the anechoic head impulse responses from [17] to
simulate both the point sources and the diffuse noise. The
female and male talker point sources were placed 0.8 m from
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Fig. 3. Scenario 1 comparing the proposed (red) with the BSS (blue) method,
the BMVDR-N (green) and the BMVDR (black star).
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Fig. 4. Scenario 2 comparing the proposed (red) with the BSS (blue) method,
the BMVDR-N (green) and the BMVDR (black star).

the head, while the point sources that are for the diffuse noise
are placed 3 m from the center of the head. All simulated
signals have a duration of 14 seconds in which the first 4
seconds the noise is active only. The BMVDR filters used
the true a and an estimate of Pz using a perfect VAD. The
ηin
L, η

in
R, η

out
L , and ηout

R are estimated using the method in [15]
using a perfect VAD and the true a. We used an overlap and
add methodology for processing the signals with a frame size
of 10 ms and overlap 50%. The sampling frequency is 16 kHz.

Figs. 3 and 4 show a performance comparison for the first
and second simulated acoustic scenario, respectively. The gap
in performance, between the SBB method and the proposed
method, depends on the input/output NBSNR structure and
type of the noise field as discussed in Sections III-C and III-D.
For the first simulated acoustical scenario, the proposed
method achieves a higher noise reduction performance (as
measured with SSNR) for most binaural spatial error values.
This is due to the big difference of the structure of the output
NBSNR compared to the structure of the input NBSNR as
explained in Section III-C. However, this is not the case for
the second simulated scenario as expected (see Section III-D),
since the structure of the output NBSNR is very similar with
the structure of the input NBSNR. Moreover, note that the
BMVDR-N method has the worst performance over the other
two methods in all acoustic scenarios for most N values.

V. CONCLUSION

We proposed a modified version of the selective binaural
beamformer (SBB) approach. The proposed method differs
from the SBB approach in the classification stage of the time-
frequency (TF) tiles. It uses the output SNR for labeling the
TF tiles either to target-dominant or noise-dominant. This
modification is better aligned with the simultaneous masking
principle. Furthermore, it was experimentally shown that in
some acoustical scenarios the proposed method provides larger
amount of noise reduction than BSS for the same binaural
spatial distortions.

REFERENCES

[1] S. Doclo, W. Kellermann, S. Makino, and S. Nordholm, “Multichannel
signal enhancement algorithms for assisted listening devices,” IEEE
Signal Process. Mag., vol. 32, no. 2, pp. 18–30, Mar. 2015.

[2] J. M. Kates, Digital hearing aids. Plural publishing, 2008.
[3] B. Cornelis, S. Doclo, T. Van den Bogaert, M. Moonen, and J. Wouters,

“Theoretical analysis of binaural multimicrophone noise reduction tech-
niques,” IEEE Trans. Audio, Speech, Language Process., vol. 18, no. 2,
pp. 342–355, Feb. 2010.

[4] E. Hadad, S. Doclo, and S. Gannot, “The binaural LCMV beamformer
and its performance analysis,” IEEE Trans. Audio, Speech, Language
Process., vol. 24, no. 3, pp. 543–558, Mar. 2016.

[5] E. Hadad, D. Marquardt, S. Doclo, and S. Gannot, “Theoretical analysis
of binaural transfer function MVDR beamformers with interference
cue preservation constraints,” IEEE Trans. Audio, Speech, Language
Process., vol. 23, no. 12, pp. 2449–2464, Dec. 2015.

[6] A. I. Koutrouvelis, R. C. Hendriks, R. Heusdens, and J. Jensen, “Relaxed
binaural LCMV beamforming,” IEEE Trans. Audio, Speech, Language
Process., vol. 25, no. 1, pp. 137–152, Jan. 2017.

[7] A. I. Koutrouvelis, R. C. Hendriks, J. Jensen, and R. Heusdens, “Im-
proved multi-microphone noise reduction preserving binaural cues,” in
IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), Mar. 2016.

[8] T. Klasen, T. Van den Bogaert, M. Moonen, and J. Wouters, “Binaural
noise reduction algorithms for hearing aids that preserve interaural time
delay cues,” IEEE Trans. Signal Process., vol. 55, no. 4, pp. 1579–1585,
Apr. 2007.

[9] J. Thiemann, M. Müller, and S. van de Par, “A binaural hearing aid
speech enhancement method maintaining spatial awareness for the user,”
in EURASIP Europ. Signal Process. Conf. (EUSIPCO), Sep. 2014, pp.
321–325.

[10] J. Thiemann, M. Müller, D. Marquardt, S. Doclo, and S. van der Par,
“Speech enhancement for multimicrophone binaural hearing aids aiming
to preserve the spatial auditory scene,” EURASIP J. Advances Signal
Process., 2016.

[11] H. As’ad, M. Bouchard, and H. Kamkar-Parsi, “Perceptually motivated
binaural beamforming with cues preservation for hearing aids,” in IEEE
Canadian Conf. Electrical and Computer Engineering (CCECE), May
2016.

[12] J. Capon, “High-resolution frequency-wavenumber spectrum analysis,”
Proc. IEEE, vol. 57, no. 8, pp. 1408–1418, Aug. 1969.

[13] B. D. Van Veen and K. M. Buckley, “Beamforming: A versatile approach
to spatial filtering,” IEEE ASSP Mag., vol. 5, no. 5, pp. 4–24, Apr. 1988.

[14] D. Marquardt, “Development and evaluation of psychoacoustically mo-
tivated binaural noise reduction and cue preservation techniques,” Ph.D.
dissertation, Carl von Ossietzky Universität Oldenburg, 2015.

[15] J. Jensen and M. S. Pedersen, “Analysis of beamformer directed single-
channel noise reduction system for hearing aid applications,” in IEEE
Int. Conf. Acoust., Speech, Signal Process. (ICASSP), Apr. 2015, pp.
5728–5732.

[16] T. Painter and A. Spanias, “Perceptual coding of digital audio,” Pro-
ceedings of the IEEE, vol. 88, no. 4, pp. 451–515, Apr. 2000.

[17] H. Kayser, S. Ewert, J. Annemüller, T. Rohdenburg, V. Hohmann, and
B. Kollmeier, “Database of multichannel in-ear and behind-the-ear head-
related and binaural room impulse responses,” EURASIP J. Advances
Signal Process., vol. 2009, pp. 1–10, Dec. 2009.

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 632


