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ABSTRACT

This paper studies a new Bayesian algorithm for the joint reconstruc-
tion and classification of reflectance confocal microscopy (RCM)
images, with application to the identification of human skin lentigo.
The proposed Bayesian approach takes advantage of the distribution
of the multiplicative speckle noise affecting the true reflectivity of
these images and of appropriate priors for the unknown model pa-
rameters. A Markov chain Monte Carlo (MCMC) algorithm is pro-
posed to jointly estimate the model parameters and the image of true
reflectivity while classifying images according to the distribution of
their reflectivity. Precisely, a Metropolis-within-Gibbs sampler is in-
vestigated to sample the posterior distribution of the Bayesian model
associated with RCM images and to build estimators of its parame-
ters, including labels indicating the class of each RCM image. The
resulting algorithm is applied to synthetic data and to real images
from a clinical study containing healthy and lentigo patients.

Index Terms— Reflectance confocal microscopy, Bayesian al-
gorithm, Classification, Metropolis-within-Gibbs sampler

1. INTRODUCTION

The lentigo is a hyperplasia that affects the skin. It comes from the
proliferation of melanocyte cells at the dermo-epidermic junction,
which leads to the disorganization of the regular cellular network
[1]. Clinically, this disorder is assessed visually on the skin surface
or through biopsy. Reflectance confocal microscopy (RCM) imaging
is increasingly used to explore various skin lesions [2, 3], including
lentigo. For example, Fig. 1 shows examples of images from patients
with and without lentigo (more images can be found in [4]). Various
studies have attested of the usefulness of RCM for cancer and other
tumor diagnosis [5]. In [1], the authors reported good correlation
between RCM and histology in the case of melanoma. Studies of
RCM for treatment follow-up [6–8] and guidance [9] have also been
conducted.

However, RCM images are up to now mainly analyzed visually.
Image processing methods could be helpful to exploit their potential
and provide aid for medical decision making. Few of such methods
were reported in the literature. In [10], Luck et al. developed a nu-
clei segmentation method based on a Gaussian model for the nuclei
reflectivity and a truncated Gaussian distribution for the intensity of
the cytoplasm fibers. Their Bayesian classification algorithm relies
on a Gaussian Markov random field exploiting spatial correlation
between neighboring pixels of the analyzed images. Another appli-
cation of RCM was developed and validated by Kurugol et al. to
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Fig. 1. Images (at the depth 49.5 µm) from the patient #8 who
is badly classified compared to a healthy and lentigo patient (well
classified). One can observe more similarity between this patient
and the healthy one then with the lentigo.

identify the dermoepidermal junction by classifying appropriate tex-
ture features [11, 12]. Hames et al. [13, 14] proposed a skin layer
segmentation method for RCM images based on a logistic regres-
sion classifier. An SVM classification method was also developed
in [15] to identify skin morphological patterns using RCM image
texture features. Finally, a wavelet-based classification method was
developed in [16] to distinguish benign and malignant melanocytic
skin tumors. This method, which will be used as a benchmark in our
study, is based on a decision tree classifier.

This paper studies a new Bayesian method for classifying RCM
image pixels into two classes corresponding to healthy and lentigo
tissues. Our first contribution is a hierarchical Bayesian model that
allows a set of RCM images to be classified into healthy and lentigo
classes. Each image is assumed to be corrupted by a multiplica-
tive speckle noise with a gamma distribution. A truncated Gaussian
distribution is then assigned to each image to classify, constraining
these images to be positive. Prior distributions are finally assigned
to the means and variances of these truncated Gaussian distributions,
to the noise variances, and to the image labels. The joint posterior
distribution of the proposed model is finally determined and will be
used for image classification and parameter estimation. The second
contribution of this paper is the derivation of an estimation algo-
rithm associated with the proposed hierarchical Bayesian model. As
the minimum mean square error (MMSE) and maximum a posteriori
(MAP) estimators of the proposed model cannot be easily computed
from its joint posterior, we investigate a hybrid Gibbs sampler al-
lowing this posterior to be sampled (see [17, 18] for details). The
proposed Bayesian model and estimation algorithm are validated us-
ing synthetic and real RCM images, resulting from a clinical study
containing healthy and lentigo patients. The obtained results are very
promising and show the potential of the proposed denoising and clas-
sification strategy.
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The paper is structured as follows. The problem studied in this
work is introduced in Section 2. The proposed hierarchical Bayesian
model and its estimation algorithm are studied in Sections 3 and 4.
Section 5 validates the proposed technique using simulated data with
different noise levels and real data obtained from a clinical study.
Conclusions and future work are finally reported in Section 6.

2. PROBLEM FORMULATION

2.1. Observation model

Consider L noise free images, containing N pixels, gathered in the
matrix S = [s1, · · · , sl] ∈ RN×L where sl ∈ RN (l = 1, ..., L)
denotes the image associated with the lth patient. Denote by Y =
[y1, . . . ,yl] ∈ RN×L the corresponding noisy images. Using these
notations, the observation model is

yl = sl � bl, with bl ∼ G(ρl, θl) (1)

where bl ∈ RN is a noise vector with a gamma distribution with
shape parameter ρl and scale parameter θl (see [4] for motivations),
and � denotes the termwise product. In order to ensure that the
proposed model (1) is identifiable, the mean of the gamma noise is
constrained to equal 1, leading to

E(bl) = 1 ⇒ ρl =
1

θl
. (2)

The problem addressed in this paper is to classify the images yl
(for l = 1, ..., L) into two classes representing healthy and lentigo
patients. The next section introduces a hierarchical Bayesian model
that is used for this classification.

3. HIERARCHICAL BAYESIAN MODEL

This section introduces a hierarchical Bayesian model that can be
used to estimate the unknown N × L matrix of noiseless images S,
the L × 1 vectors (z,θ) containing the class labels and the noise
variances associated with the L observed images from the matrix
Y . This model is defined by a likelihood, and by parameter and
hyperparameter priors defined below.

3.1. Likelihood

The multiplicative speckle noise bl is known to have a gamma dis-
tribution. Thus, the observation model (1) leads to

ynl|snl, θl ∼ G
(

1

θl
, snl θl

)
(3)

where ∼ means "is distributed according to", G is the gamma distri-
bution whose probability density function (pdf) is

f(ynl | snl, θl) ∝
(ynl)

1
θl
−1

exp
(
− ynl
snl θl

)
Γ
(

1
θl

)
(snl θl)

1
θl

IR+(ynl) (4)

with IR+(ynl) the indicator function on R+, ∝ means “proportional
to” and Γ denotes the gamma function. Assuming independence be-
tween the observed signals, the likelihood of the L observed images
can be written

f(Y |S,θ) ∝
N∏
n=1

L∏
l=1

f(ynl|snl, θl).

3.2. Priors for the signal of interest

To ensure the positivity of the noiseless images, a truncated Gaussian
distribution is assigned to sl

sl | zl = k, µk, σ
2
k ∼ NR+(µk, σ

2
k) (5)

where NS denotes the truncated normal distribution on S, k takes
the two values 1 and 2 depending on the patient class, and (µk, σ

2
k)

are the means and variance of the two truncated Gaussian distribu-
tions.

3.3. Prior for the noise variances

A non-informative conjugate inverse gamma prior (denoted as IG)
is classically selected for the scale parameter θj [19]

θl | a, b ∼ IG(a, b) (6)

where a and b are fixed hyperparameters, that are adjusted to reflect
the absence of prior knowledge on θl, i.e., the mean and variance
of θl are fixed to 1 and 100 in order to obtain a flat prior. The joint
prior for the vector of noise variances denoted as f(θ | a, b) is finally
obtained as the product of the marginal densities f(θi | a, b).

3.4. Prior for the label vector z

The parameter vector z = (z1, ..., zL) is a label vector that asso-
ciates each image to a healthy or lentigo skin. Because of the ab-
sence of prior knowledge about this parameter, it is assigned a uni-
form prior defined as

P (zl = k) =
1

2
, ∀l = 1, ..., L. (7)

The labels associated with the different patients are supposed to be
a priori independent, i.e., the joint prior of z denoted as f(z) is the
product of the probabilities defined in (7).

3.5. Hyperparameter priors

In order to complete the description of the proposed hierarchical
Bayesian model and to allow hyperparameters to be estimated di-
rectly from the data, we propose to assign priors for the different
hyperparameters. A Gaussian prior has been selected for the mean
µk and a non-informative inverse gamma prior for the variance σ2

k

(see [19, 20] for motivations)

µk | µ0, σ0 ∼ N (µ0, σ
2
0) (8)

σ2
k | α0, β0 ∼ IG(α0, β0) (9)

where µ0, σ2
0 , α0, β0 are fixed in order to obtain flat priors, i.e., µ0 =

100, σ2
0 = 105 whereas the mean and variance of σ2

k were fixed to
1 and 1000. The joint pdfs f(µ | µ0, σ0) and f(σ2 | α0, β0) are
finally obtained as the product of their marginal densities assuming
prior independency between the components of these two vectors.

3.6. Joint posterior distribution

The proposed Bayesian model is illustrated by the directed acyclic
graph (DAG) displayed in Fig. 2, which highlights the relationships
between the observations Y , the parameters S,θ,z and the hyper-
parameters µk, σ2

k. Assuming prior independence between the dif-
ferent components of the parameter vector X =

(
S,θ,z, µk, σ

2
k

)
,
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Fig. 2. DAG for the parameter and hyperparameter priors. The user
fixed hyperparameters appear in boxes (continuous line).

the joint posterior distribution of this Bayesian model can be com-
puted using the following hierarchical structure

f(X | Y ) ∝ f(Y | S,θ)f(S,θ,z,µ,σ2) (10)

with f(S,θ,z,µ,σ2) = f(S | z,µ,σ2)f(θ | a, b)
× f(µ | µ0, σ0)f(σ2 | α0, β0)f(z). (11)

The complexity of the proposed Bayesian model summarized in the
DAG of Fig. 2 and its resulting posterior (10) prevent a simple com-
putation of the maximum a-posteriori (MAP) or minimum mean
square (MSE) estimators of the unknown model parameters. The
next section studies an MCMC method that is used to sample the
posterior (10) and to build estimators of the parameters involved in
the proposed Bayesian model using the generated samples.

4. METROPOLIS-WITHIN-GIBBS ALGORITHM

This section studies a hybrid-Gibbs-sampler, which is guaranteed to
generate samples asymptotically distributed according to the target
distribution (10). The Gibbs sampler described in Algo. 1, iteratively
generates samples distributed according to the conditional distribu-
tions of (10) that are not described here for brevity (see [4, Sec-
tion IV] for more details regarding these distributions). Because of
the complexity of the conditional distributions, we consider random-
walk Metropolis-Hastings (RWMH) [17,18] moves within the Gibbs
sampler, which requires the definition of proposal distributions for
each conditional distribution that is not easy to sample. In our case,
we use a truncated Gaussian as a proposal distribution for the pa-
rameters S,θ,σ2 and a Gaussian distribution for µ. The main steps
of the proposed Metropolis-within-Gibbs sampler are summarized
in Algo. 1. This algorithm provides a sequence of samples of the
vector X =

(
S,θ,z, µk, σ

2
k

)
denoted as X(i)

j that are used to ap-
proximate the MMSE estimators by using Monte Carlo integration
[21] as

XMMSE ' 1

NMC − Nbi

NMC∑
i=Nbi+1

X(i) (12)

where Nbi is the number of burn-in iterations and NMC is the total
number of Monte Carlo iterations. Finally, the following maximum
a-posteriori (MAP) estimator is considered for the label z

zMAP
l '

1 if
[
z
(i)
l = 1

]NMC

i=Nbi+1
≥
[
z
(i)
l = 2

]NMC

i=Nbi+1

2 otherwise
(13)

Algorithm 1 Metropolis-within-Gibbs algorithm

1: Input: Nbi,NMC,S,θ,z,µ,σ
2

2: Initialization
3: Initialize S(0),θ(0),z(0),µ(0),σ2(0)

4: for i=1 to NMC do
5: Parameter update
6: Sample S(i) | Y ,θ,z,µ,σ2 according to (12) in [4, Section

IV] using an RWMH with a truncated Gaussian proposal
7: Sample θ(i) | Y ,S, a, b according to (13) in [4, Section IV]

using an RWMH with a truncated Gaussian proposal
8: Sample µ(i) | S,σ2, µ0, σ

2
0 according to (14) in [4, Section

IV] using an RWMH with a Gaussian proposal
9: Sample σ2(i) | S,µ, α0, β0 according to (15) in [4, Section

IV] using an RWMH with a truncated Gaussian proposal
10: Sample z(i) | S,µ,σ2 from the pdf (16) in [4, Section IV]
11: end for
12: Result: S(i),θ(i),z(i),µ(i),σ2(i) for i = 1, ...,NMC.

where [x = 1]ji and [x = 2]ji denote the numbers of samples satisfy-
ing the conditions x = 1 and x = 2 in the interval [i, j].

5. SIMULATION RESULTS

5.1. Synthetic data

This section evaluates the performance of the proposed algorithm on
synthetic data. Different experiments were conducted using L =
100 synthetic images and three values of the signal to noise ra-
tio SNR ∈ {0 dB, 10 dB, 20 dB}, allowing the algorithm perfor-
mance to be appreciated for different noise levels. Each image con-
tains N = 2000 pixels and was generated according to (3). These
images were separated into healthy and lentigo classes containing
50 images. The noiseless images of the two classes were respec-
tively generated according to the truncated Gaussian distributions
NR+(µ1, σ

2
1) and NR+(µ2, σ

2
2), with µ1 = 17, µ2 = 20, σ2

1 =
2, σ2

2 = 4. Algo. 1 was run for NMC = 100000 iterations and the
different model parameters were estimated using (12) and (13) using
a burn-in period of length Nbi = 99900. The performance of the al-
gorithm was evaluated by computing the mean square errors (MSEs)
of the different parameters and the signal to noise ratios (SNRs) de-
fined as

MSEj =‖ X̂j −Xj ‖2 (14)

SNRj = 20 log10

(
||Xj ||

||Xj − X̂j ||

)
. (15)

Quantitative results are presented in Table 1 for the three experi-
ments. This table shows good estimation results of the different
model parameters when considering different noise levels. Table 1
also shows perfect classification results for SNRY ≥ 10 dB, and a
probability of correct classification of 91% for the challenging case
SNRY = 0 dB. These results highlight the potential of the pro-
posed strategy in denoising and classifying the images obtained from
model (3) and improving the estimation of the different parameters
of this model.

5.2. Real data

This section is devoted to the validation of the proposed denois-
ing and classification algorithm when applied to real RCM images.
These RCM images were acquired with apparatus Vivascope 1500
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Table 1. Performance of the proposed algorithm for denoising and classification of synthetic data for three corrupted data SNRY =
[0 dB, 10 dB, 20 dB].

SNRY = 0 dB SNRY = 10 dB SNRY = 20 dB

MSE2 SNR (dB) MSE2 SNR (dB) MSE2 SNR (dB)

µ1 0.56 30.12 1.54.10−4 62.72 2.63.10−5 70.4

µ2 0.95 21.42 1.89.10−5 73.24 6.64.10−5 67.79

σ2
1 2.91 1.01 0.015 18.07 0.011 25.7

σ2
2 7.14 2.57 4.58 5.42 0.006 22.07

θ 1.14.10−3 20.44 4.74.10−5 26.56 5.68.10−7 30.44

S 5.48 16.53 2.88 20.81 0.7093 26.87

Accuracy 91% 100% 100%

Accuracy (CART) 83% 100% 100%

and correspond to the stratum corneum, the epidermis layer, the
dermis-epidermis junction (DEJ) and the upper papillary dermis.
Each RCM image shows a 500× 500µm field of view with 1000×
1000 pixels. A set of L = 45 women aged 60 years and over were
recruited. All the volunteers gave their informed consent for ex-
amination of skin by RCM. According to the clinical evaluation per-
formed by a physician, volunteers were divided into two groups. The
first group was formed by 27 women with at least 3 lentigines on the
back of the hand whereas 18 women without lentigo constituted the
control group. Images were taken on lentigo lesions for volunteers
of the first group and on healthy skin on the back of the hand for the
control group. An examination of each acquisition was performed
in order to locate the stratum corneum and the DEJ precisely in each
image. Given the large size of the images, we preferred to select and
apply our algorithm to patches of 250×250 pixels for each image to
reduce the computational cost. The obtained results were then used
to calculate the confusion matrix and four indicators (sensitivity,
specificity, precision, accuracy) shown in Table (2). These indicators
are defined as Sensitivity = TP/(TP+FN), Specificity = TN/(FP+TN),
Precision = TP/(TP+FP), Accuracy = (TP+TN)/(TP+FN+FP+TN),
where TP, TN, FP and FN are the numbers of true positives, true
negatives, false positives and false negatives. This table allows us
to evaluate the classification performance of the proposed strategy.
The accuracy of the proposed method equals 97.7%, which corre-
sponds to a single mistake for the lentigo patient #8. Fig. 1 shows
that the texture of this mis-classified image is not very destructed
as for other lentigo patients, and is visually similar to the texture of
healthy patients. Fig. 3 shows examples of noisy RCM images and
their estimated true reflectivity, illustrating the denoising part of the
proposed algorithm. We can observe that the estimated images have
low intensities compared to the noisy images which is due to the fact
that the noise is multiplicative. To assess the significance of our re-
sults, our algorithm was then compared to the method presented in
[16]. This method consists in extracting from each RCM image a set
of 39 analysis parameters (further technical details are available in
[22]) and to apply to these features a classification procedure based
on classification and regression trees (CART). Note that the CART
algorithm was tested on the real RCM images using a leave one out
procedure. As shown in Table 2 (between brackets), the accuracy ob-
tained with the CART algorithm is 82.2% , i.e., it is slightly smaller
that the one obtained with the proposed method. Moreover, the pro-
posed Bayesian model can be used for the characterization of RCM
images thanks to its estimated parameters.

Table 2. Classification performance on real data (45 patients). The
results between brackets stand for the CART method.

Confusion matrix L̂ Ĥ
Sensitivity

Specificity

Lentigo 26 (24) 1 (3) 96.2 % (88.8 %)

Healthy 0 (5) 18 (13) 100 % (72.2 %)

Precision 100 % (82.7 %) 94.7 % (81.2 %)

Accuracy 97.7 % (82.2 %)

Fig. 3. Examples of noisy images (at the depth 49.5 µm) and their
estimated true reflectivities.

6. CONCLUSIONS

This paper presented a new Bayesian strategy as well as an MCMC
algorithm for classifying RCM images as healthy or lentigo images.
A Bayesian model was introduced based on a gamma distribution for
the multiplicative speckle noise and on various priors assigned to the
unknown model parameters. A hybrid Gibbs sampler was then con-
sidered to sample the posterior of this Bayesian model and to build
Bayesian estimators. Simulation results conducted on synthetic and
real data allowed the good performance of the proposed classifier to
be appreciated. Future work includes the introduction of spatial cor-
relation on the estimated noiseless images to improve their quality.
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7. APPENDIX: THE RANDOM-WALK
METROPOLIS-HASTINGS

The RWMH used in Algo. 1, consists in generating samples dis-
tributed according to the conditional distribution of each parameter
of interest [4, Section IV]. This is achieved using the “J” conditional
distributions fj(.), for j ∈ {1, ..., J}, and their associated proposal
distributions gj(.), ∀j. The first step is to initialize the sample value
for each parameter X(0)

j , for j ∈ {1, ..., J}. The main loop of the
RWMH algorithm consists of three components:

1. Generate a candidate Xcand
j from the proposal distribution

gj
(
X

(cand)
j |X(i−1)

j

)
. This proposal is the truncated Gaus-

sian distribution NR+

(
X

(i−1)
j , ε2j

)
(generated using [23]

) for the parameters S,θ,σ2 and the Gaussian distribution
N
(
X

(i−1)
µ , ε2µ

)
for µ.

2. Compute the acceptance probability using the acceptance
function α

(
X

(cand)
j |X(i−1)

j

)
based upon the proposal

distribution and the conditional density for each parameter

α

(
X

(cand)
j

| X(i−1)
j

)
= min


fj

(
X

(cand)
j

)
fj

(
X

(i−1)
j

) gj

(
X

(i−1)
j

|X(cand)
j

)
gj

(
X

(cand)
j

|X(i−1)
j

) , 1


3. Accept the candidate with probability α
(
X

(cand)
j |X(i−1)

j

)
.

In order to maximize the efficiency of the algorithm, the vari-
ances of the proposal distributions ε2j have been adjusted such that
the acceptance rate is between 0.3 and 0.6 as suggested in [17, 24].
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