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Abstract—Multi-carrier (MC) multiple-input multiple-output
(MIMO) radar offers an additional degree of freedom in the
array optimization through the carrier frequencies. In this paper,
we study the MC-MIMO array optimization with respect to the
direction of arrival (DOA) estimation based on the Cramer-Rao
bound (CRB). In particular, we choose the transmit and receive
antenna positions as well as the carrier frequencies to minimize
the single-target CRB subject to a constraint of the peak sidelobe
level. A genetic algorithm is used to solve the problem and
numerical examples demonstrate the superiority of our approach
over both single-carrier MIMO radar and existing design rules.

I. INTRODUCTION

To improve the direction of arrival (DOA) estimation accu-
racy, multiple-input multiple-output (MIMO) radar proved to
be a suitable technique in comparison to conventional phased
array [1], [2]. The idea is a virtual array with M x N antennas,
where M is the number of transmit (Tx) and NV is the number
of receive (Rx) antennas. The concept of multi-carrier (MC)
MIMO extends the MIMO idea by using C carrier frequencies
to obtain a virtual array of C' x M x N channels [3]. The
steering vector of this virtual array depends on the antenna
positions in wavelength. Hence the use of multiple carriers
results in a scaling of the single-carrier (SC) virtual array. This
enables a large aperture of the virtual non-uniform array for
a high DOA estimation accuracy while satisfying the spatial
Nyquist condition to avoid grating lobes at the same time. The
price of such an MC-MIMO radar in comparison to SC-MIMO
is however a coupling of the DOA and range estimation [4],
[5], [3]. Though the coupling can be resolved in the Cramer-
Rao bound (CRB) with a certain choice of the coordinate
system (local decoupling) [6], the calculation of the sidelobes
as well as the estimation have to be done in the joint range-
DOA domain.

In the literature, the term “Multi-Carrier Radar” appears also
to describe Orthogonal Frequency Multiplexing (OFDM, [7]),
where the available frequency band is divided into subcarriers
to simultaneously transmit symbols at different Tx of a MIMO
system. In contrast, this work uses multiple carrier frequencies
to improve the DOA estimation and is independent of the
recent progress in OFDM. Furthermore, some of the listed
literature uses the term “Frequency Diverse Radar” to describe
this MC approach, however Frequency Diverse Radar is also
the name of a technique to overcome frequency-dependent
fluctuation of the radar cross section (RCS, [8]) or to inten-
tionally create a coupling of range and DOA [4]. We would
like to mention the difference to those techniques here.

The CRB was calculated in [9] for a SC-MIMO and in
[6] for MC-MIMO radar. It expresses the achievable DOA
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estimation accuracy of unbiased estimators. It depends on the
positions of the Tx and Rx [1] for SC-MIMO and additionally
on the carrier frequencies for MC-MIMO radar [6].

To obtain a high DOA estimation accuracy, the design of
the array is thus important. Existing approaches optimizes the
correlation matrix of probing signals of an MIMO radar with
given antenna positions [2], [10], [11]. The minimization of the
deviation (in the least squares sense) from a desired beampat-
tern (beampattern matching) is another option [2], [10], [11].
[12] gives basic design rules for the antenna positions of a
linear monostatic MIMO radar. [13] suggests an optimization
of the antenna positions to minimize the single-target CRB
of a phased array subject to a given maximum sidelobe level
using a genetic algorithm (GA). [3] gives design rules to avoid
spatial aliasing in a colocated MC-MIMO system, but without
taking the CRB or the sidelobes into account.

In this work, we extend the array optimization in [13]
to the case of a colocated MC-MIMO radar. We want to
design an array with a low single-target CRB of DOA for
a high-accuracy DOA estimation while not exceeding a given
maximum sidelobe level of the range-DOA ambiguity function
to improve the noise and interference robustness of the DOA
estimator. One major difference to [13] is the virtual array of
size C' x M x N of the MC-MIMO radar which is determined
by the M + N antenna positions and C' carrier frequencies.
Hence, the number of parameters to be optimized for a MC-
MIMO system is much lower than that of a phased array
with the same number of channels (e.g. only 7 parameters
must be optimized for a 2 x 4 x 4 MC-MIMO linear array
with 32 channels, whereas 31 parameters are required for a
comparable phased array, see Sec. IV-B). For this purpose,
we formulate an optimization problem which yields a high
DOA estimation accuracy and a limited sidelobe-level. The
optimization problem is examined (i.e. we derive the range
in which the ambiguity function must be evaluated) and
compared to the phased array design problem. Experiments
compare the proposed array design approach to existing MC-
MIMO and single-carrier design approaches.

The rest of this paper is organized as follows: We introduce
the signal model in Sec. II. The ambiguity function and the
CRB used as design metrics are stated in Sec. III. Sec. IV
describes the array optimization. Results are discussed in Sec.
V. Sec. VI concludes the paper.

We use the following notations in this work: Underlined
variables denote vectors while bold variables denote matrices.
7 is the imaginary unit, ® the elementwise Hadamard product
and ® the Kronecker tensor product. 1, is a vector of [V ones.
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II. MULTI-CARRIER MIMO SIGNAL MODEL

We focus on the array optimization for DOA estimation in

this paper and make the following assumptions:

e The MC-MIMO radar has M Tx and N Rx antennas and
C carrier frequencies which result in a virtual array with
C x M x N channels.

o We consider the single-target case. Multiple targets will
be studied in another publication due to limited space.

o The signals of the different channels are orthogonal using
an appropriate multiplexing scheme (e.g. TDM, FDM,
CDM [14] or OFDM).

o All antennas are isotropic and have the same antenna
gain. The same array design approach can be easily
extended to known non-isotropic characteristics.

o Pulse compression was already performed, i.e. symbols
such as frequency-modulated continuous wave (FMCW)
chirps or OFDM symbols are already removed. The signal
vector contains the signal of one range-Doppler cell. We
make this assumption only to provide an array design
tool independent of the modulation. In our model, the
coupling of range and DOA is still present and is not
assumed to be resolved by the pulse compression.

o The noise is an additive temporally and spatially white
Gaussian random process with variance o2.

« For simplicity, we assume a stationary scene in this paper,
i.e. we do not estimate the Doppler caused by a moving
target. This will also be done in a future work.

The vector z € CYM¥ contains the baseband signals of all
C x M x N channels. The vector of unknown parameters
0 = [u”,7]" contains the range r and the electrical angles
u € R? of the target [3]:

T=[Ty11, TNy TIMN - v£CMN]T
= aexp(jB) +n = aa(d) +n (1)

with
c RCMN x3 (2)

c RMNX? (3)

2w
B= 7i® [P, —2- 1]
P=Pr®1ly+1 @Pr«

The rows of Prx € RM*2 and Pry, € RV*2 denote the
position of M Tx and N Rx antennas of a planar array,
respectively. P contains the position of all M x N antennas
of the SC-MIMO array. f = [f1,..., fc]|T is the vector of C
carrier frequencies. The matrix B characterizes the C'x M x N
virtual array of the MC-MIMO radar. o is the complex
amplitude of the baseband signal and a(f) is the steering
vector.

III. METRICS FOR ARRAY DESIGN
A. Cramer-Rao bound

The CRB gives a lower bound for the variance of unbiased
estimators. For multi-carrier arrays, the joint CRB of DOA and
range was derived in [6]. Without loss of generality, we assume
in the following that the origin of the coordinate system is
always placed in the centroid of the virtual array. In this case,
the CRBs of DOA and range are decoupled [6]. This allows us
to study the CRB of DOA independent of range and simplifies
the expression of the CRB.
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The individual CRBs of the two electrical angles u, and u,
for a general MC-MIMO planar array is given by

K ~1
C];{Bum = ('7901 - '75y/'7yy) ’ (4)
Vf
K ~1
Vf
12 2
==L (i) ) (6)
2 p \27
vf = || f]|? is the sample power of the carrier frequencies and
|:’79wc wa] _ PTP (7)
Yzy  Vyy

is the sample correlation matrix (except for a missing normal-
ization ﬁ) of the (x,y)-position of the single-carrier virtual
array P. It is equal to the sample covariance matrix (except for
a scaling) since the origin of the coordinate system is assumed

to be in the array centroid. p = |||? is the signal power of
the target.
In the case of a linear array, the CRB is
1 1
CRB,, = k—— (8)

B. Ambiguity function

While the CRB is a local property of the likelihood function
around the true parameter value, the (noise-free) ambiguity
function also describes the global properties of an array such
as sidelobes. The noise-free ambiguity function

B(0o,0) = |la(8,)" a(0)]* ©

is the power of the correlation of the steering vector a(6,)) with
0y = [wow, uoy, 0] (or 8y = [uoz,70]” for a linear array) of
the true target with the steering vector of any hypothesized
target a(6) [15].

Though the choice of the coordinate system leads to a range-
DOA decoupling of the CRB, the ambiguity function does
not decouple in general. While for SC radar the ambiguity
function of DOA (known as beampattern) and range decouple
due to space-time separability [16], this is not the case for MC
radar [6]. The range leads to different phase-shifts for different
carrier frequencies which are superimposed by the phase-
shifts caused by DOA. Hence the ambiguity function must
be evaluated at all combinations of range and electrical angles
to find the height of the sidelobes. The ambiguity function of
0 is 3-dimensional for a planar array or 2-dimensional for a
linear array.

The sidelobes reflect the correlation between the signals and
hence the probability of global errors in the DOA estimation.
High sidelobes are unwanted, as they generally lead to an
increased SNR threshold where the estimation reaches the
CRB [17] and to a performance degradation when multiple
targets are present. A common measure of the sidelobes is the
highest sidelobe level or peak sidelobe level (PSLL).

To determine the PSLL, the ambiguity function must be
evaluated in a certain parameter range. Due to symmetry (6,
and 6 are exchangeable in eq. 9), it is sufficient to evaluate
the ambiguity function for a fixed wuo, and ugy (e.g. ugy =0
and ug, = 0) and varying u, and u,, where |upy — uz| < 2
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and |ugy — uy| < 2 to observe all possible sidelobes. Though
e.g. ugy = 0 and u, = 2 is physically not possible due to the
definition of ||u|| < 1, this formulation is useful in eq. 9, as
B(0,0) has the same value as for ug, = —1 and u, = 1. If
the region of interest for v can be limited, an evaluation of
the ambiguity function in a smaller region is sufficient.

According to [5], the multi-carrier ambiguity function is
periodic in the range direction. Extending [5] to the case
of non-equidistant carrier frequencies, the uniform grid with
the largest grid spacing determines the unambiguous range
Tamb. Numerically, we can find r,mp by calculating the greatest
common divisor (gcd) of the carrier frequencies differences d .
As the ged is defined only for integers, we have to normalize
the carrier frequencies with respect to machine precision first.
The unambiguous range is then given by rymp = C/gcd(éf).
Tamb can be much smaller than the largest range of the pulse
compression (FMCW processing), €.g8. Tamb = ¢/|fi—f2| in
the case of two carriers. Therefore we evaluate the ambiguity
function between an arbitrary r¢ and rg + ramp. We note that
the ambiguous range and hence the values of ¢ for which the
ambiguity function is evaluated to find the PSLL depend on
the optimization parameter f. Therefore the ambiguous range
must be recalculated in each step of the optimization.

IV. DESIGN OF MULTI-CARRIER MIMO ARRAY
A. Problem formulation

For the design of a MC-MIMO array, we optimize the
positions of the Tx and Rx antennas P, and Pgy as well
as the carrier frequencies f. Our approach is the minimization
of a cost function with respect to some constraints:

arg min A CRB,, + (1 —7) - CRB,,

PR S

(10)

s.t. L. € Ry, P € Ry, Prys € Ry,
min(éTx) > Omin, min(éRx) > Omin,
PSLL < PSLLax.-

To make the design of the MC-MIMO array independent of the
DOA estimator (e.g. Bartlett Beamformer or MUSIC [18]), we
use a cost function based on the CRB. We combine both CRBs
in eq. 4 and eq. 5 into a single cost function by a weighted
combination:

9(Pr1x, Prx, f) = - CRB,, + (1 —n) - CRB,, an

Choosing 7 € [0, 1] allows a weighting of the DOA estimation
accuracies in the x- and y-direction. 1 can be set to n = 0.5
for an equal weighting or to 7 = 1 or = 0 if only the x- or
y-direction should be considered (e.g. for linear arrays).

The first line of constraints are bounds for the carrier
frequencies and antenna positions. Ry denotes the available
region for the carrier frequencies f i Similarly, all Tx and Rx
antenna positions p. . € R* and p, € R? are restricted
to the regions R and Rgy, respecfively. They define in
particular the maximum aperture allowed for the physical
Tx and Rx array. The second line of constraints define the
minimum antenna spacing due to antenna considerations like
patch size, tapering and crosstalk. The last constraint defines
the maximum PSLL value PSLL,,,x which is not allowed to
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be exceeded in order to enhance the noise and interference
robustness of the DOA estimation.

The PSLL value has to be determined from the complete
sidelobe region which starts at the first minimum of the
ambiguity function after the mainlobe. In this region, the
ambiguity function is evaluated on a grid to get a coarse
estimate of the PSLL. The location of the maximum is then
used as the starting value for a local maximization of the
ambiguity function. A gradient-based or downhill simplex
(Nelder-Mead) method can be used for this purpose. (Such
a local maximization is only applied to refine the PSLL found
with the grid search; the grid search must already sufficiently
resolve the ambiguity function to ensure finding the highest
sidelobe level.) The result is the location and value of the
PSLL.

B. Complexity consideration

In the common case of a contiguous Ry and Rgy, €.g.
Rrx and Rgy only limit the array aperture, the number of
optimization parameters can be slightly reduced. The CRB
and ambiguity function do not depend on absolute position of
the virtual array P, hence we can assign the outermost (not to
affect the constraints) position of the aperture to one Tx and
Rx antenna and exclude them from the set of optimization
parameters.

If Ry, Ryx, Rgrx and 6min should be normalized to one of
the carrier frequencies and Ry is contiguous, one can similarly
assign the highest (not to affect the constraints) frequency of
R to one element of f. This carrier is then removed from
the optimization set. A corresponding scaling of f, P and r
would result in the same term P@ in eq. 1 and hence the same
PSLL and CRB.

The total number of parameters to be optimized is in general
C + (M + N)d. If both of the above simplification can be
applied, the complexity is reduced to (C' —1)+ (M + N —2)d.
d is the dimension of the array, i.e. d = 1 for a linear array and
d = 2 for a planar array. This is much less than (CM N —1)d
parameters for a SC phased array with the same number of
channels as in [13].

C. Optimization algorithm

Eq.10 poses a non-convex optimization problem. A local
optimization is hence not suitable, as it can converge to a
poor local optimum.

To overcome this problem, we apply a genetic algorithm
which is known to be suitable for non-convex optimization
tasks [19], [20] due to the random nature of the mutation step.
Though genetic algorithms may not converge to the global
optimum, they will most likely find a good local optimum. We
apply a GA, because GA were already successfully applied for
phased array design in [13], however other global optimizers
such as simulated annealing might also be suitable.

The idea of genetic algorithms is a set of possible solu-
tions (the population) which is improving in each iteration
(generation). The children of a population are generated by
altering the best individuals of one generation (parents), by
either crossover (random combination of parameter values of
two parents) or mutation (addition of a Gaussian distributed
random value to each parameter of one parent). The lower the
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TABLE I: Comparison of optimization metrics

Vi Yea PSLL
design rule of [3] 0.5848 - 1071 0.55
optimized SC-MIMO  0.3352 - 1021 0.20
optimized MC-MIMO ~ 1.6690 - 1021 0.20

cost function of a individual, the higher the probability that it
will be selected as a parent of the next generation.

We use the Augmented Lagrangian Genetic Algorithm
(ALGA) to solve the MC-MIMO design problem, but other
genetic algorithms can be suitable as well. The idea of ALGA
is to implement the nonlinear constraints as penalty terms with
iteratively re-estimated weights which are added to the cost
function value and then apply an unconstrained optimization
[21].

V. NUMERICAL RESULTS

For numerical verification, we design a linear MC-MIMO
array. The number of carrier frequencies used here is C' = 2,
where we normalize to one suitable carrier frequency fo, i.e.
f = [fo, f1]* with f; € [0.8,0.95]fo. The number of Tx
and Rx antennas was M = 4 and N = 4. We did not apply a
constraint on the antenna spacing, i.e. 0, = 0. The maximum
aperture was set to 100%, and the PSLL was limited to PSLL
<0.2.

In total, the virtual array has C' x M x N = 32 different
channels. For the optimization of a 32-channel linear phased
array as in [13], 31 parameters must be optimized. By our MC-
MIMO radar, only (C — 1) + (M + N — 2)d = 7 parameters
need to be optimized.

The ALGA generated 20% of the child population by
mutation and 80% by crossover. The population size was
10,000. We used the MATLAB implementation of ALGA
from the global optimization toolbox. The result is an ar-

ray with p = [0,2.792,8.119,14.606]" £, p_ .

[0,4.516,26.572,60.871]Tf—c0 and f = [1,0.949]7 fo.

As a comparison, we also optimized a M =4 and N = 4
single carrier MIMO radar with f = [fo, fo]” under the
same constraints as before. The result here is: Pyrw =
[0,10.417, 23.820,25.763]Tf—00, P, pe = [0, 5.000,5.975,
6.498]Tf—°O and f = [1,1] fo.

Furthermore, we compare our results to the design rule of
[3], with f = [1,0.85]% fo, Py = [0,4,8,12]Tm and
Pyps = [0, 1’2’3]T0.165f0‘

Table I lists the performance metrics for the design results.
The achievable performance is expressed in terms of vy - Yz,
which is inversely proportional to the CRB (but independent
of the SNR). The PSLL is given as well.

Fig. 1 shows the range-DOA ambiguity functions for §, =
[—1, 0] to illustrate the shape of the sidelobes. The ambiguity
function of the SC MIMO radar is independent of range,
while the MC MIMO ambiguity function must be evaluated
for different ranges to find the PSLL.

Fig. 2 shows a cut through the range-DOA ambiguity
function at ry to illustrate the shape of the main beam and to
better compare the ambiguity functions of the different design
approaches. The sidelobes can only be partially observed in
Fig. 2, as they might occur at other ranges (see Fig. 2). It

ISBN 978-0-9928626-7-1 © EURASIP 2017

0.9
0.8
0.7
0.6
<
0.5&—{
0.4
0.3

0.2

[y

-0.5 0 0.5
Uz

(a) MC array with design rule of [3]

-1 05 0 0.5 1
Uz
(b) SC array optimized with ALGA

-1 -0.5 0 0.5 1
Uz
(c) MC array optimized with ALGA

Fig. 1: Ambiguity function for 8, = [—1, 0] for different array
design approaches.
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Fig. 2: The optimized MC-MIMO has a narrow main beam
and a moderate PSLL. ug, = —1.

10°

optimized MC-MIMO

optimized SC-MIMO
= rule of [3]

—  RMSE

v CRB

10!

vCRB, RMSE
=
I

-10 -5 0 5 10 15 20 25 30
SNR in dB

Fig. 3: RMSE over SNR. The optimization of MC-MIMO is

MC hence enables a better array design not only in terms of
technical metrics like CRB and PSLL, but also in terms of
RMSE.

VI. SUMMARY

In this paper we examine the optimization of an MC-
MIMO array. We propose a CRB-based cost function with the
PSLL as a constraint for the optimization. The optimization
is solved using a genetic algorithm. Experiments demonstrate
the through MC, a better array design is achievable in terms
of PSLL and CRB as well as in terms of RMSE.
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