
Visually Evoked Potential for EEG Biometrics
using Convolutional Neural Network

Rig Das, Emanuele Maiorana, Patrizio Campisi
Section of Applied Electronics, Department of Engineering, Roma Tre University

Via Vito Volterra 62, 00146 Roma, Italy
Email: {rig.das, emanuele.maiorana, patrizio.campisi}@uniroma3.it

Abstract—In this paper we investigate the performance of elec-
troencephalographic (EEG) signals, elicited by means of visual
stimuli, for biometric identification. A deep learning method such
as convolutional neural network (CNN), is used for automatic
discriminative feature extraction and individual identification.
Experiments are performed on a longitudinal database compris-
ing of EEG data acquired from 40 subjects over two distinct
sessions separated by a week time. The experimental results
testify the existence of repeatable discriminative characteristics
in individuals’ EEG signals.

Index Terms—Electroencephalography, Visually evoked poten-
tial, Convolutional neural network

I. INTRODUCTION

Electroencephalographic (EEG) signals have been theorized
to posses distinctive characteristics as biometric identifiers in
[1]. Recently EEG biometrics has attracted again the interest
of researchers due to some convenient properties such as
their confidentiality and ability to guarantee high security
[2]. However, some restraints are also associated with the
practice of EEG-based biometric recognition. For instance,
EEG signals are highly sensitive to both endogenous and
exogenous noises during acquisition, typically resulting in
the presence of artifacts in the recorded data. Hence, it is
difficult to perform a proper feature extraction and selection for
a EEG-based biometric identification system. In this regard,
several machine learning techniques, based on models such
as neural network (NN) [3], hidden Markov model (HMM)
[4], or support vector machine (SVM) [5], have been al-
ready proposed for people recognition using different kinds of
brain signals. Back-propagation-based neural networks such
as convolutional neural network (CNN) represent another
interesting model which could be proficiently applied for EEG-
based biometric applications. In fact, one of the most useful
properties of CNN relies on the distribution of its neurons’
weights once the network is trained. The convolution between
these neurons and receptive fields/kernels generates a distin-
guishing characteristics about the type of high-level features
that are there to be detected [6]. In this paper we exploit the
capabilities of CNN for biometric people identification using
EEG signals elicited through protocols generating visually
evoked potentials (VEPs).

This specific type of brain signal is based on the fact
that a visual stimulus generates spontaneous time-locked EEG
responses from the visual cortex, which can be recorded and
used for user recognition purposes [7]. In more detail, in

this paper we investigate a “geometric” protocol [7], where
different visual stimuli are presented to the considered subjects
in terms of geometric shapes, in order to generate VEP re-
sponses for individuals’ biometric identification. The adopted
experimental protocol include the presentation of sequences of
both target and non-target stimuli images to the subjects. We
perform tests on EEG recordings collected from 40 subjects
during two distinct sessions, spanned over a period of one
week, in order to inspect the achievable stability and identifi-
cation performance across time. The accuracy achieved by our
biometric identification system reestablishes our claim on the
permanence of EEG signals made in [7], where it has been
shown that VEP responses can be efficiently used as stable
biometric identifiers across different acquisition sessions.

This paper is organized as follows: Section II provides
a brief review on the state-of-the-art VEP-based biometric
recognition. Section III provides the detailed description of our
data acquisition protocol and CNN topology, while Section IV
discusses about the employed EEG-based biometric identifi-
cation system. Section V presents the obtained experimental
results, and conclusions are eventually drawn in Section VI.

II. STATE OF THE ART: VEP-BASED EEG BIOMETRICS

A brief synopsis of the state-of-the-art works on the use of
visual-stimuli-elicited EEG signals for biometric identification
is presented in this section. This approach, for individual
identification, has been first proposed in [8], where VEP
signals have been recorded from 20 subjects by presenting
black and white images of common objects, using 61 channels
and exploiting the gamma ([30 : 40]Hz) band, with spectral
power ratio as features. A back-propagation neural network
(BPNN) has been used to identify individuals with 99.6%
accuracy while performing ANOVA tests on each individual
channel. In [9] EEG responses have been collected from 5
different subjects during 5 sessions on the same day. In a
particular session, a sequence of 9 images has been randomly
shown for 20 times to each subject, while asking him to focus
on one or more pre-selected target images and ignore the
rest. Principal component analysis (PCA) has been applied
on the obtained time sequences for feature extraction, and
linear discriminant analysis (LDA) used for classification.
A performance accuracy of 97.6% has been achieved by
considering only one channel for both target and non-target
stimuli. The significance of irrelevant stimuli has been studied
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TABLE I
OVERVIEW OF STATE-OF-THE-ART FOR VISUAL STIMULI ELICITED EEG BIOMETRIC SYSTEMS.

Paper Users Ch.s Protocol Type of Stimuli Features Classifier Performance Sessions

Palaniappan [8] 20 61 VEP snodgrass & vanderwart pictures spectral power ratio BP NN CRR=99.6% 1

Touyama [9] 5 1 (Cz) VEP/ERP target and non-target images PCA LDA CRR=97.6% 5 (same day)

Gupta et al. [10] 8 8 VEP/ERP rapid serial visual paradigm P300 LDA CRR=97.0% 1

Das et al. [11] 20 20 VEP rapid visual categorization task LDA related features KNN CRR=94.0% 1

Yeom et al. [12] 10 8 VEP/ERP self and non-self face images Adaptive discriminative feature Non-Linear SVM CRR=86.1% 2 (different days)

Armstrong et al. [13]
15

1 ERP text reading ERP signal Correlation
CRR=89.0% 2 (1 week)

8 CRR=93.0% 2 (over 6 months)

in [10] using rapid serial visual paradigm (RSVP) stimuli on
8 different subjects. EEG signals elicited from 8 channels
have been acquired in a solo session, and P300 waves used
as features. A threefold cross-validation using Bayesian LDA
has been performed to obtain a maximum correct recognition
rate (CRR) of 97%. In [11] VEP data from 20 subjects
have been collected by exhibiting face and car images for
40ms each. SVM and LDA have been applied to discriminate
individuals. A 94% classification accuracy has been achieved
by selecting the best performing post-stimulus set, and using
a k-nearest-neighbors (KNN)- based classification technique.
It is worth specifying that all the above mentioned works have
considered EEG data acquired on a single day to achieve high
performance accuracy.

Conversely, in [12] EEG signals have been collected from
10 subjects during 2 separate sessions on different days, using
a random sequence of self-face and other’s-face images as
visual stimuli. Each performed session has included 2 distinct
runs, each comprising 50 trials, where in each trial a total
of 20 images (10 self-face and 10 other’s-face images) has
been presented. A total of 180 trials has been selected for
training with the remaining 20 used for testing, therefore
mixing data from the two available sessions for enrolment
purposes. An adaptive discriminant feature method has been
used for extracting features, and non-linear-SVM for classifi-
cation purposes, achieving a CRR of 86.1%. Two different
schemes have been instead considered in [13]: first, EEG
signals have been collected from 15 subjects at an inter-session
temporal distance of one week. Then, only 8 subjects’ signals
have been recorded at a time span of 6 months. CRRs at
89.0% and 93.0% have been achieved by considering event
related potentials (ERPs) as features, and signal correlation as
classifier. As can be noticed, it is worth remarking that works
performing tests on EEG data collected during acquisition
sessions spanning different days typically report recognition
performance much lower than those obtained exploiting EEG
signals recorded during a single acquisition session.

Table I provides a summary of the aforementioned ar-
ticles. It is also worth remarking that the performance so
far achieved by the approaches already proposed have been
obtained over relatively small databases, comprising at most
20 users when single-session datasets are considered, and 15
subjects for tests with multiple-session data, being therefore
hard to derive reliable evidence regarding the suitability of
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Fig. 1. Electrodes montage: M = 17 Ch.s.

VEP signals as biometric identifier from current literature.
Considering such limits of the contributions so far presented,
the present work investigates the stability and invariability
of EEG signals across different acquisition sessions for the
purpose of biometric recognition.

III. EMPLOYED PROTOCOL & NETWORK TOPOLOGY

According to the “geometric” visual stimulation protocol
we have considered, EEG signals are elicited and acquired
by presenting sequences of target and non-target stimuli. The
occurrence of non-target stimuli is significantly higher than
that of the target ones. The following subsections contain de-
tailed descriptions of the employed EEG acquisition protocol,
database, and CNN network topology.

A. “Geometric” Protocol

In this protocol, 8 different geometric shapes are considered
as visual stimuli. Among them, the circle is the target stimulus,
with the others (triangle, rectangle, square, pentagon, hexagon,
octagon and diamond) treated as non-target [7]. A sequence
of these images is displayed on a LCD monitor during each
recording, with the observer’s task being to concentrate on the
occurrences of the target stimuli, while ignoring the others.
A VEP is automatically elicited from the subject’s brain
when either target or non-target stimuli are displayed [7].
Each geometric shape is selected randomly for a total of 60
occurrences, each time displayed for 250 ms with a following
empty black screen lasting 450 ms. The recording sessions
therefore last a total of 5 m and 36 s for each subject.
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Fig. 2. Preprocessing Steps

B. Dataset & Preprocessing

A Galileo BE Light amplifier, with 19 electrodes/channels
placed on the subjects’ scalp according to the 10-20 interna-
tional system [14], has been used for our EEG data acquisition.
Specifically, we have acquired EEG data from 40 different
subjects, whose age ranges from 20 to 35 years with an average
of 25, by considering M = 17 channels, excluding the two
frontal FP1 and FP2 ones from the standard 10−20 montage,
as most relevant EEG potentials are typically in the central and
occipital regions [7]. Figure 1 shows the selected 17 channels.

The data have been acquired in two distinct sessions,
namely S1 used as training dataset, and S2 employed as
testing dataset, with S2 separated by a week from S1. EEG
signals are pre-processed using a common average referencing
(CAR) filter in order to reduce the artifacts that are related to
unsuitable reference. Subsequently we perform a frequency
filtering on the acquired EEG signals to the [0.5 : 8]Hz
subband, since in [7] we have shown that this particular
frequency range guarantees better recognition performance for
VEP-based EEG biometrics, and then down-sample the signals
from 256Hz to 128Hz. Finally, the EEG signals are normal-
ized using a “z-score” transformation, which generates zero-
mean data with unitary variance. Eventually, each subjects’
signals is detrended by individually subtracting its best-fit line,
which allows us to concentrate on the data fluctuations of the
estimated trend. Figure 2 shows all the preprocessing steps in
sequential manner.

C. Convolutional Neural Network

A convolutional neural network (CNN) is a multilayer
perceptron (MLP) network with a special topology containing
more than one hidden layer [6]. CNN is primarily used for
object recognition in image processing, handwritten char-
acter and speech recognition, as it automatically extracts
discriminative features inside its layers from the raw input
information, without any specific normalization. This kind of
model is advantageous for input data with an inner structure
like for instance images, and where invariant features have
to be discovered. Such capability may be useful for dealing
with EEG signals, which substantially vary over time and
individual in their raw form, being therefore local-kernel-based
architectures typically inefficient for classification purposes,
since in most of the occasions it is not easy to determine the
type of features that are supposed to be extracted. On the other
hand, a CNN-based classifier can be an interesting approach
for EEG clustering, as it may turn out to be more appropriate
to let the network extract the most discriminant features by
constructing high-level features through its back-propagation
steps.

It has to be mentioned that CNN has already been proposed
for EEG-based biometric recognition in [15], where however
only brain signals acquired in resting states conditions have
been evaluated. More importantly, the tests there performed
have been based on EEG data acquired during a single session
from only 10 users, being the resulting reliability questionable,
as already commented in Section II for VEP-based approaches.

D. Network Topology

Our CNN network topology is shown in Figure 3. This
network has 4 convolutional layers, 2 max-pooling, 1 ReLU,
and a softmaxloss layer. The detailed network topology is
described as follows:

• L0: The input layer with an input data size of [17× 77],
where 17 is the number of EEG acquisition channels
and 77 represents 600ms signal after the display of a
geometric shape image at a rate of 128Hz, as described
in Section III-A.

• L1M1: First hidden layer, composed of 77 convolutional
filter of size [5 × 5 × 1] and a max-pooling (MP) layer
of size [2× 2]. This layer transforms the input data into
a size of CL1M1 = [6 × 36 × 77] after convolving and
down-sampling.

• L2M2: Second hidden layer, which is composed of 320
conv filter of size [5×5×77] and a max-pooling layer of
size [2× 2]. This layer transforms the first hidden layer’s
output into a size of CL2M2 = [1× 16× 320] high level
features.

• L3M2R1: This hidden layer is composed of 1024 convolu-
tional filter of size [1×16×320] and an Rectified Linear
Unit (ReLU) layer, whose purpose is to introduce non-
linearity into the system. This layer changes the previous
layer’s activation map into a CL3M2R1 = [1× 1× 1024]
feature map.

• L4M2R1: The output layer or the fully connected layer
is produced by convolving the previous layer’s activation
map using 40 convolutional filter of size [1× 1× 1024].
This layer has only one map of 40 neurons, which
represents the 40 classes/subjects. This layer is fully
connected with L3M2R1. Softmaxloss function is used
here as a loss function for back-propagation.

IV. EMPLOYED EEG-BASED BIOMETRIC SYSTEM

Once EEG data are acquired and preprocessed, the corre-
sponding templates are generated as described in Section IV-A.
The performed training and identification network phases are
described in Section IV-B and IV-C, respectively.
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Fig. 3. Employed CNN Architecture with sample EEG signal acquired from 17 channels

A. Template Generation

Templates are generated from the acquired EEG data
through a signal averaging process, as VEPs are usually signif-
icantly low in amplitude with respect to the overall behavior of
EEG fluctuations, and therefore need to be evaluated over mul-
tiple repetitions in order to be extracted from the background.
Since both target and non-target stimuli are time-locked with
the originating events, we collect 60 responses of each stimuli,
lasting for T = 600ms from the outset of the associated event.
For a particular user, the generated template is a collection
of 17 time-dependent potentials, registered from M = 17
EEG channels in correspondence to either target or non-
target stimuli [7]. Given an M -channel EEG signal collected
through the proposed protocol, mean behaviors across R = 50
consecutive responses (out of 60 available for target events,
and 7 · 60 for non-target events) to the same stimulus are
evaluated from the available epochs to filter out the undesired
noise, with a maximum of T = 50 averaged templates which
can be therefore generated for each subject from S1 (training)
and S2 (testing) session’s data.

B. CNN Training

After the execution of the preprocessing steps, the EEG
signals are passed through the newly designed CNN network,
and inside the first hidden layer a set of very low level
features are extracted. In the subsequent convolutional layers,
the network gradually builds up over these low-level features,
in order to create high-level features for fully connected layer.

In more detail, templates generated from session S1 are
used for CNN training, meaning that, for every subject, we
have an input data of size 17× 77, passed through the newly
designed CNN network as described in Section III-D. For

CNN network designing and training we use the MatConvNet-
1.0-beta16 tool [16]. The actual length of our training dataset
is 17 × 77 × 2000, where 40 subject’s T = 50 templates
generates 2000 samples. 90% of each subject’s data were
used for training purposes and rest 10% for validation. The
learning rate of the CNN network is set at 0.001 with a batch
size of 5 samples, so that the loss can be minimized with
higher precision with the execution of every epochs. As for
the number of epochs to be considered, higher numbers usually
allow the network to get well trained so that the weights of
different layers are updated with precision. For our experiment,
we have investigated 20, 50 and 100 epochs and found that
50 epochs are enough to achieve higher accuracy.

C. Identification

In the identification stage, the testing templates are gener-
ated as described in Section IV-A from the S2 session. The
testing dataset size is the same as the training dataset, where
the only significant difference is that the training and testing
datasets are from different acquisition sessions. For each
testing sample of size 17×77, the trained CNN network returns
probability values corresponding to all the 40 classes/subjects.
The maximum probability value identifies the subject with
which the testing sample is more similar.

V. RESULTS & DISCUSSION

Experiments are performed for both target and non-target
events separately, in order to discover the most suitable
scheme for biometric identification based on VEP. Specifically,
the accuracy of our CNN-network-based biometric system is
evaluated through rank-wise identification rates. The results
obtained for non-target vs. non-target scheme is shown in
Figure 4. As can be seen, a 98.8% accuracy is achieved

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 984



1 2 3

Rank

95

96

97

98

99

100
R

ec
o

g
n

it
io

n
 R

a
te

 (
%

)

Fig. 4. “Geometric” protocol: Cumulative Match Curve (CMC) for M=17
Ch. combination of NonTarget vs. NonTarget Scheme.

for rank-1, and absolute accuracy is attained at rank-3. On
the other hand, for the target vs. target scheme the rank-
1 performance is at 80.65% accuracy, while 90% and 97%
accuracies are respectively reached for rank-5 and rank-10.
Figure 5 displays the identification performance for the target
vs. target scheme.

Besides notably improving the recognition performance
previously achieved in [7], where the VEP generated by the
acquired EEG signals are compared through a simple cosine
distance classifier, the above discussed results re-enforce our
previously-stated claim, observing that the non-target vs. non-
target scheme is able to achieve higher accuracy rate for
biometric identification.

VI. CONCLUSIONS

In this paper we have proposed a visual-stimuli elicited
EEG-based biometric identification mechanism, with a CNN
is used to extract discriminative features and achieve a high
degree of accuracy. Matching schemes based on non-target
vs. non-target events perform much better than those relying
on target vs. target events. The proposed CNN-network-based
identification system, with its high recognition accuracy, al-
lows us to take EEG biometrics into serious consideration for
further investigation. In addition to its high level of security
and confidentiality, EEG-based biometric system might be
useful for physically disabled people, who are unable to use
the conventional biometric systems like fingerprints, retinal
scans etc. In future, EEG biometrics can have a far-reaching
applications to different fields such as law enforcement, de-
fense systems and others.
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