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Abstract—Many applications in audio signal processing require
a precise identification of time frames where a predefined target
source is active. In previous work, Artificial Neural Networks
(ANNs) with crosscorrelation features showed a considerable
potential in this field. In this paper, the performance of ANN-
based target activity detection is analyzed in more detail and
compared with a well-performing “classical” signal processing
method. On the one hand, the impact of the angular distance
between target source and interferers is evaluated for both the
neural network-based method and the classical one. On the other
hand, the sensitivity of both methods to varying Signal-to-Noise
Ratio (SNR) conditions is analyzed with respect to the importance
of a proper choice of detection thresholds. In the evaluations,
the ANN-based method proves its general superiority and also
its robustness with respect to a non-ideal choice of detection
thresholds.

I. INTRODUCTION

Commonly, audio signal processing algorithms rely on
knowledge of the activity of a target source in noisy back-
ground, which is denoted as Voice Activity Detection (VAD).
Depending on the application, the goal can be to detect
any activity of the target source, which can be exploited
to, e.g., estimate noise power spectral density during speech
absence or to activate an Automatic Speech Recognition
(ASR) system in a later processing stage. Other applications
require an identification of time instants and/or frequencies
with target source dominance, which can be beneficial if
source signal statistics or Relative Transfer Functions (RTFs)
[1] of the target source need to be estimated during target
dominance. Classical VAD methods address scenarios where
the target source is a human speaker embedded into non-
speech background noise. These conventional VAD methods
typically exploit distinctive features of speech like stationarity,
harmonic structure and spectral envelopes for discrimination
against background noise [2], [3]. Beyond this, multichannel
methods can also incorporate spatial information into the
detection process [4].

If the target speech signal is corrupted by interfering speak-
ers, these conventional single-channel VAD measures are no
longer effective since multiple sources exhibit speech signal
characteristics. As a result, spatial diversity of the sources
becomes the most important feature for detecting target source
activity. In order to be able to exploit spatial information,
multi-microphone recordings are required. Conventional meth-
ods for acoustic source localization can be modified to al-

low a discrimination between multiple point sources [5] or
between background noise (assumed to be incoherent) and
point sources [6]. Similarly, the position of the null of an
adaptive nullsteering beamformer can be tracked, indicating a
dominant target source if the null is steered towards the target
source position [7]. The cross-correlation (or cross power
spectral density) between a pair of microphones also allows
for detecting activity of a target speaker if the position of
its main peak (or the phase difference) corresponds to the
expected Time Difference of Arrival (TDoA) of the target
source [8]–[11]. Similarly, the Magnitude Squared Coherence
(MSC) can be used as feature to distinguish between a
coherent target source and incoherent background noise [12].
By calculating the powers of the outputs of a beamformer and
a nullformer steered towards the target source, target signal
and interference-plus-noise power estimates can be calculated,
allowing for estimating the Signal-to-Noise Ratio (SNR) as
feature for Target Activity Detection (TAD) [13]–[15]. Finally,
probabilistic methods have been discussed for TAD in recent
years [16]–[19].

For combining multiple or multidimensional features to
a single decision, ANNs have gained interest, especially in
the context of single-channel VAD [3], [20]–[24]. Recently,
we proposed combining features for multichannel TAD with
knowledge on the target source position by means of an ANN
[25]–[27]. The concept was proposed for robot audition and
offers the advantages that scattering effects at the robot’s head
can be learned by the ANN, and that a flexible definition of
desired detection thresholds is possible. In this paper, this
method is evaluated in more detail. On the one hand, its
sensitivity to the angular distance of interferers, and especially
small target-to-interferer distances, is evaluated. On the other
hand, its robustness with respect to the number of interferers
is analyzed.

The remainder of this paper is organized as follows: In
Section II, the problem is formulated, followed by a de-
scription of a conventional TAD method in Section III and
the neural network-based one in Section IV. The above-
mentioned evaluations are performed in Section V, followed
by conclusions in Section VI.

II. PROBLEM DESCRIPTION

At microphone i ∈ {0, . . . ,M − 1}, we record the signal
xi(k) = si(k) + ni(k), which contains target source com-
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ponents si(k) and undesired (i.e., interferer and/or noise)
components ni(k). By forming blocks of length L, we can
calculate a time-dependent SNR estimate

SNRdB(m) = 10 log10

(∑M−1
i=0

∑L−1
k=0 s̄

2
i (k,m)∑M−1

i=0

∑L−1
k=0 n̄

2
i (k,m)

)
(1)

for each block m, where s̄i(k,m) and n̄i(k,m) denote the mth
blocks of si(k) and ni(k), respectively. We define the ground
truth for target activity at block m by checking if SNRdB(m)
exceeds a certain threshold ϑ0,dB, which yields the desired
detection sequence

Ddes(m) =

{
1, if SNRdB(m) > ϑ0,dB,
0, otherwise. (2)

The threshold ϑ0,dB is defined according to the application.
If any target activity should be detected, a small value (accord-
ing to the minimum target signal level) would be required. In
this paper, we are interested in target source dominance, which
means that the threshold is chosen as ϑ0,dB = 0dB. In [25], the
generalized crosscorrelation (phase transform) (GCC-PHAT)
[28]

r̂xixj
(∆k,m) = DFT−1

(
X∗i (µ,m)Xj(µ,m)

|X∗i (µ,m)Xj(µ,m)|

)
(3)

was found to be the most valuable feature for ANN-based
TAD, where Xi(µ,m) denotes the Short-Time Fourier Trans-
form (STFT) of xi(k) for frequency bin µ and block m.
Therefore, the evaluations in this paper are limited to cross-
correlation features. In order to be able to compare the ANN-
based method with conventional methods, a very effective,
recently proposed method by Taseska and Habets [8] is taken
as reference. In the following section, this method is shortly
explained.

III. NARROWBAND DOA-BASED TAD

In [8], a method for TAD is proposed, which defines the
hypotheses Ht for target dominance and Hu for dominance of
undesired components. By using bin-wise Direction of Arrival
(DoA) estimates φmax(m,µ) under a free-field assumption, the
decision on target source activity for frequency bin µ and
frame m is made based on a ratio of posterior probabilities

DNB(m,µ) =

{
1, if p̃{Ht(µ)|φmax(m,µ)}

p̃{Hu(µ)|φmax(m,µ)} > ϑNB,

0, otherwise.
(4)

In order to estimate the posterior probabilities, the Proba-
bility Density Functions (PDFs) p (φmax(µ)|Ht(µ);φtar) and
p (φmax(µ)|Hu(µ);φtar) are modeled by a von Mises distri-
bution [29], and a PDF which is nearly uniform but has an
anti-mode at φtar, respectively. Since we are interested in a
broadband decision, we modify the narrowband method by
adding up the posterior probability ratios, which yields the
new detector

DBB(m) =

 1, if
Bmax∑
µ=1

p̃{Ht(µ)|φmax(m,µ)}
p̃{Hu(µ)|φmax(m,µ)} > ϑBB,

0, otherwise.
(5)

IV. NEURAL NETWORK-BASED TAD

Conventional methods for TAD suffer from a number of
shortcomings. On the one hand, the selection of detection
thresholds may be cumbersome. This problem becomes crucial
when shadowing effects occur and peaks in the crosscorrela-
tion are no longer as pronounced as in the free-field case. In
order to overcome these problems, using ANNs for mapping
TAD features to a binary decision was proposed in [25]. In
the original paper, several features including crosscorrelation
sequences, SNR estimates and MSC were discussed. Since the
crosscorrelation was found to be the most powerful feature,
the other features will not be considered in this paper. The
crosscorrelation vector fCC,i,j(m) at time frame m for the
microphone pair (i, j) is defined as

fCC,i,j(m) =
[
r̂xixj

(−K,m), . . . , r̂xixj
(+K,m)

]T
∈ R(2K+1)×1. (6)

It is possible to stack multiple vectors for different microphone
pairs (ip, jp), p ∈ [0, P − 1] to one vector fCC(m), solving
ambiguity problems which can occur in the two-microphone
case for sources located symmetrically to the axis defined
by the microphone positions. Moreover, taking into account
the elevation of the respective sources would be possible with
more than one microphone pair.

If the crosscorrelation vector fCC(m) is used without any
further information, no link to the target source can be
established. Therefore, knowledge on the target source DoA
relative to the array axis needs to be appended to the input
vector of the ANN. To this end, we define a vector fφtar(m)
as

fφtar(m) = [cos(φtar), sin(φtar)]
T ∈ R2×1, (7)

containing the cosine and sine of φtar. The trigonometric
functions were applied in order to account for the circular
nature of φtar (e.g., the fact that 0◦ is equivalent to 360◦).
By stacking the crosscorrelation vector fCC(m) and the target
source position vector fφtar(m), we define the feature vector
f(m) as

f(m) =
[
fCC(m)T, fφtar(m)T

]T
∈ R(P (2K+1)+2)×1. (8)

For conventional methods, the relation between the target
source position φtar and the crosscorrelation sequence has to be
established by hand (e.g., by assuming free-field propagation).
The ANN-based method does not require any prior knowledge
on the topology of the microphone array but allows to learn the
relation between φtar and the crosscorrelation sequence during
the training process.

V. EXPERIMENTS

A. Setup

For evaluation, a separate training and test set were defined
based on impulse responses measured with the robot NAO
(Softbank) at a distance of 1m. A new 12-microphone head
for the robot, designed in the European Union-funded project
Embodied Audition for RobotS (EARS) (http://robot-ears.eu)
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Mic 1 Mic 2

Fig. 1: Robot Nao with microphone positions.

TABLE I: Evaluation scenarios.

Training set
Number of interferers {1, 2}
Target source position φtar ∈ {0◦, 30◦, . . . , 180◦}
Interferer position(s) φint,1 ∈ {0◦, 30◦, . . . , 180◦}

φint,2 ∈ {0◦, 30◦, . . . , 180◦}
φtar 6= φint,1 6= φint,2

Test set
Number of interferers {1, 2}
Target source position φtar ∈ {10◦, 40◦, . . . , 160◦}
Interferer position(s) φint,1 ∈ {10◦, 40◦, . . . , 160◦}

φint,2 ∈ {10◦, 40◦, . . . , 160◦}
φtar 6= φint,1 6= φint,2

[30] was used for the measurements. Two microphones as
marked in Fig. 1 were used (i.e., one microphone pair, P = 1),
with a horizontal distance of 6.8 cm. The impulse responses
from the source positions to the microphones were convolved
with speech signals of length 5s. Scenarios with 1 or 2
interferers located at the positions summarized in Table I were
simulated for T60 times of 150 ms and 400 ms, leading to
42 min of training data and 25 min of test data. In order to
create different training and test sets, the test set does not
contain the same positions as the training set and different
clean source signals were used. For both training and test set,
knowledge of the target source position φtar was assumed.
The sampling rate fs was set to 48 kHz, the maximum lag
of the crosscorrelation was K = 15 and the block length was
L = 2048, corresponding to 43ms, with an overlap of 50%.

The ANNs were implemented in Python based on the
Lasagne library [31]. Feedforward classification neural net-
works with 2 hidden layers consisting of 30 nodes each were
used, with a tanh function as nonlinearity. This network
topology was found to be sensible (but not crucial) during the
experiments. Moreover, not only the current feature vector, but
also the one of the previous block was fed into the neural
network. The training was performed with a ground truth
computed according to (2) and a desired detection threshold
ϑ0,dB = 0dB.

For the modified reference algorithm [8] as explained briefly
in Section III, the concentration parameter of the von Mises
distribution was chosen such that the best values were achieved
(κ = 25). Since no background noise was considered, the
corresponding hypothesis was also not taken into account for
the reference algorithm. The bin-wise DoAs were estimated
based on the phase (with free-field assumption) with an
STFT length of 256. The maximum frequency bin Bmax was
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Fig. 2: Choice of the detection threshold for different ∆min.

TABLE II: MCC (with different thresholds) and AUC depen-
dent on the minimum target-to-interferer distance ∆min.

(a) Proposed method.

∆min MCCopt MCC0.5 AUC

all 0.63 0.63 0.90
30◦ 0.56 0.56 0.87
60◦ 0.71 0.70 0.93
90◦ 0.72 0.71 0.94

120◦ 0.79 0.77 0.96

(b) Method based on [8].

∆min MCCopt AUC

all 0.53 0.84
30◦ 0.48 0.81
60◦ 0.66 0.90
90◦ 0.67 0.92
120◦ 0.73 0.93

chosen as 13 (≈2.5 kHz) in order to avoid ambiguities at high
frequencies.

B. Evaluation measures

A common representation in detection theory is the Receiver
Operating Characteristic (ROC), where the true positive rate
is plotted over the false positive rate. The Area Under Curve
(AUC) describes the area under the ROC curve and indicates
whether a suitable threshold can be found for detection, where
AUC = 1 denotes a perfect detection and AUC = 0.5
is the expectation value achieved by simple guessing. The
AUC only gives an indication on the existence of a good
detection threshold but not how precisely the ideal threshold
needs to be found, and if slight deviations already lead to
a performance decrease. Therefore, the Matthews Correlation
Coefficient (MCC) defined as [32]

MCC =
TP× TN− FP× FN√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)
(9)

will be the main measure in the experimental results, where
TP, FP, TN and FN denote the numbers of true/false posi-
tives/negatives. MCC=1 describes a perfect detector, whereas
simple guessing would lead to MCC=0.

C. Influence of the minimum target-to-interferer distance ∆min

In a first experiment, it is evaluated how interferers located
closely to the target source affect the performance of the
TAD algorithms. To this end, the angular distance between
the target source and the closest interferer is determined and
denoted as ∆min. Based on ∆min, the test set is subdivided into
subsets, which are evaluated separately. In Fig. 2, the resulting
MCC is calculated dependent on the threshold ϑANN applied
to the probability for target activity returned by the ANN. The
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Fig. 3: Choice of the detection threshold for varying numbers
of interferers.

curves illustrate the results obtained for the whole test set and
four subsets with different ∆min. Obviously, a large angular
distance between target source and closest interferer leads to
higher MCC values. It can be observed that all curves are
relatively flat in the center, which indicates that the choice
of the detection threshold ϑANN is not critical and deviations
from the optimum detection threshold can be accepted. In
Table IIa, this observation is confirmed. Here, two different
thresholds are applied to the output probabilities: On the one
hand, the optimum value MCCopt is shown, corresponding to
the maxima of the respective curves in Fig. 2. On the other
hand, the value MCC0.5 corresponds to the MCC obtained for
ϑANN = 0.5, which would be chosen without prior knowledge.
Obviously, the uninformed decision threshold nearly leads to
the same result as the optimum one. From ∆min = 30◦ to
∆min = 120◦, MCC0.5 improves from 0.56 to 0.77.

In Table IIb, the results obtained with the reference method
are summarized. As before, the detection threshold ϑNB was
optimized by iterating over possible thresholds and choosing
the one with the best MCC value. As expected, the refer-
ence method faces problems when it comes to distinguishing
between the target source and a close-by interferer. In this
case, phase differences are small and head shadowing effects
would have to be incorporated. Therefore, a low MCC of
0.48 is achieved for ∆min = 30◦ (compared to 0.56 for the
proposed one), but the method becomes more competitive for
∆min ≥ 90◦.

D. Influence of the number of interferers Nint

Another important factor for the performance of TAD
methods is the number of interferers. In a second experiment,
this influence is evaluated in more detail. To this end, the
test set is subdivided into scenarios with one interferer and
those with two interferers. The resulting MCC values for
the entire set and the two subsets are plotted in Fig. 3
(dependent on the threshold ϑANN). Again, both curves are
very flat around ϑANN = 0.5, indicating a low sensitivity
to the actual choice of the threshold. Due to the greater
number of possible combinations (according to Table I), the
test set contains more scenarios with 2 interferers than with 1
interferer, which explains why the curve for the entire set is
close to that obtained with 2 interferers. In the left column of

TABLE III: MCC (with different thresholds) and AUC depen-
dent on the number of interferers Nint.

(a) Proposed method.

Nint
Non-matched Matched

MCCopt MCC0.5 AUC MCCopt MCC0.5 AUC

1+2 0.63 0.63 0.90
1 0.69 0.69 0.92 0.69 0.69 0.91
2 0.61 0.61 0.90 0.63 0.62 0.90

(b) Reference method based on [8].

Nint MCCopt AUC

1+2 0.53 0.84
1 0.59 0.87
2 0.53 0.84
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Fig. 4: Matched training for varying numbers of interferers.

Table IIIa, it is confirmed that, again, choosing a threshold of
0.5 nearly leads to the optimum results. Obviously, scenarios
with two interferers make a detection of the target source more
complicated (which is also due to the lower mean distance
between target source and closest interferer). However, the
choice of the detection threshold is not affected by the number
of interferers – in both cases, 0.5 leads to a nearly optimum
decision. As before, the reference method in Table IIIb leads
to significantly worse results in terms of MCC than the neural
network-based one (for both subsets).

A final experiment evaluates the question if the results in
Fig. 3 can be improved by performing an individual training
for scenarios with 1 interferer and for scenarios with 2
interferers. For this evaluation, it is assumed that the number
of interferers is estimated correctly and the respective neural
network model is loaded. In Fig. 4, the results obtained
with this matched training are compared with those obtained
by training only one ANN model for the whole training
set. The corresponding values for MCCopt and MCC0.5 are
summarized in the right half of Table IIIa. Both the curves
and the numbers in the table show that, in fact, the matched
training does not lead to a significant improvement for both
subsets. In the 2-interferer case, a slight enhancement with
an optimum detection threshold may be deduced. However,
the curve is less symmetric than before, and when choosing
a threshold of 0.5, there is almost no improvement. From
this result, one can conclude that the original neural network
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model is well able to generalize for a varying number of
interferers, since training over the complete set does not lead to
a performance degradation compared with “matched” training.
Again, the reference method (Table IIIb) performs worse than
the ANN-based one.

VI. CONCLUSIONS

In this paper, a recently proposed method for ANN-based
TAD was evaluated with respect to its sensitivity towards
a proper choice of a detection threshold, with focus on
interferers located close to the target source and varying
numbers of interferers. It could be shown that the choice of
the detection threshold is generally not crucial, and choosing
a default threshold of 0.5 nearly leads to the same results as
an optimized threshold would. Obviously, interferers located
close to the target source affect the performance of this
method. The reference method, however, suffers more severely
from close interferers. It was also shown that the choice of a
suitable detection threshold is not affected by the minimum
target-to-interferer distance ∆min. The number of interferers
did not affect the choice of the detection threshold either, but
more interferers degraded the overall performance. Matched
training for a certain number of interferers did not lead to
an improvement, proving that training for a large set of
scenarios is sufficient. Future evaluations may include taking
into account two angular dimensions and radial distances for
the source positions. In this case, additional microphone pairs
may be considered.
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