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Abstract—Many of today’s signal processing tasks consider
sparse models where the number of explanatory variables ex-
ceeds the sample size. When dealing with real-world data, the
presence of impulsive noise and outliers must also be accounted
for. Accurate and robust parameter estimation and consistent
variable selection are needed simultaneously. Recently, some
popular robust methods have been adapted to such complex
settings. Especially, in high dimensional settings, however, it is
possible to have a single contaminated predictor being responsible
for many outliers. The amount of outliers introduced by this
predictor easily exceeds the breakdown point of any existing
robust estimator. Therefore, we propose a new robust and
sparse estimator, the Outlier-Corrected-Data-(Adaptive) Lasso
(OCD-(A) Lasso). It simultaneously handles highly contaminated
predictors in the dataset and performs well under the classical
contamination model. In a numerical study, it outperforms
competing Lasso estimators, at a largely reduced computational
complexity compared to its robust counterparts.

I. INTRODUCTION

Many problems in data analysis and signal processing
require sparse model estimation to handle large datasets in
terms of model interpretation, including the case, where the
number of explanatory variables p is larger than the sample
size n. In these settings accurate parameter estimation and
consistent variable selection are needed simultaneously. A
classical method is the least absolute shrinkage and selection
operator (Lasso) [1]

β̂ββlasso = argmin
βββ
‖y− Xβββ‖22 + λ‖βββ‖1, (1)

where y ∈ Rn is the vector of responses, X ∈ Rn×p the
predictor matrix with n denoting the number of observations
and p the number of predictors, βββ ∈ Rp the vector of
parameters to be estimated and λ a non-negative real number.
Based on the choice of the tuning parameter λ, this approach
shrinks the coefficients towards zero, which allows for a
bias-variance trade-off. Zou showed that the Lasso variable
selection can be inconsistent, so that the oracle properties do
not hold and proposed the adaptive Lasso [2]

β̂ββ
ad

lasso = argmin
βββ
‖y− Xβββ‖22 + λ

p∑
j=1

ŵj |βj |, (2)

where ŵj = 1/|β̂j |γ (γ > 0) are non-negative weights
depending on β̂ββ, which is a

√
n-consistent estimator of βββ.

When dealing with real-world data, the presence of impul-
sive noise and outliers [3], [4], [5], [6], [7] must also be
accounted for. Recently, the MM-Lasso and adaptive MM-
Lasso were introduced to robustify against outliers [8]. The
objective function of the MM estimator is

β̂ββMM = argmin
βββ

n∑
i=1

ρ

(
ri(βββ)

sn(r(β̂ββ1))

)
. (3)

Here, ρ(·) is a robustifying function, see, e.g. [3]; r(β̂ββ1) =
y−Xβ̂ββ1 is the residual of an S-estimator [3] whose estimates
β̂ββ1 have the property of minimizing a robust M-scale sn(r(βββ))
that satisfies

1

n

n∑
i=1

ρ

(
ri(βββ)

sn

)
= b,

where b is usually chosen such that consistency under the
Gaussian distribution is obtained. For MM-(adaptive) Lasso
(3) is extended by the penalty terms of (1) and (2), respectively
[8].

High breakdown point estimators like the MM or MM-Lasso
estimator perform well in the Tukey-Huber Contamination
Model (THCM) [3], which assumes, that a certain fraction
of data-points, corresponding to rows in X, are contaminated.
Unfortunately, many datasets, e.g. in atmospheric inverse prob-
lems [9], [10], contain highly and independently contaminated
predictors. This type of contamination can be represented by
the Independent Contamination Model (ICM) [11]. In contrast
to the THCM, it assumes, that a certain fraction of entries
in each predictor is contaminated, where the contamination
contained in predictor i is independent of that in predictor j,
if i 6= j. Thus, in the ICM, the majority of the data points
might be contaminated, causing classical robust estimators to
break down.

Contributions In this paper, we propose a new robust
Lasso type estimator, the Outlier-Corrected-Data-(Adaptive)
Lasso (OCD-(A) Lasso). This estimator is able to deal with
outliers that follow the classical THCM, as well as with ICM
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outliers, which contaminate individual cells of the regression
matrix X. The contaminated cells are detected and replaced
by interpolated values. For this, we introduce an outlyingness
measure that combines Stahel Donoho Outlyingness (SDO)
and Predictor Outlyingness (PO). We propose an algorithm
to compute the associated weights that is based on sampling
from a p-dimensional unit hypersphere. We provide numerical
experiments, which show that the proposed OCD-(A) Lasso
outperforms the classical OLS Lasso [2], MM Lasso [8], and
adaptive MM Lasso [8]. An advantage of the proposed OCD-
(A) Lasso is that its computational complexity is much lower
compared to its recently proposed robust counterparts.

The remainder of the paper is organized as follows. As a
motivation, we show how ICM outliers affect existing robust
estimators in Section II. Section III introduces the OCD-(A)
Lasso and Section IV describes the algorithm to compute
the weights that define the outlyingness of each cell in the
regression matrix. In Section V, we provide our simulation
results, while Section VI concludes the paper.

II. TOWARDS A NEW PARADIGM IN MODELING OUTLIERS
IN HIGH-DIMENSIONAL DATASETS

A highly valuable property of the THCM is that the percent-
age of contaminated rows in the data-matrix stays unchanged
under affine transformations, that is, if the random vector
X follows the THCM, then the affine transformed vector
X̃ = AX + b also follows the THCM. Unfortunately, the ICM
is not affine equivariant [11]. The lack of affine equivariance
has a far reaching consequence for the ICM, which is referred
to as ”outlier propagation”. Outlier propagation means that an
outlying cell in a predictor may spread over other components
of the corresponding data point, e.g. by linearly combining the
predictors in a regression model. From these considerations,
we can calculate the probability of a data point in a p-
dimensional dataset being contaminated by the formula

Pcont,row = 1− (1− ε)p, (4)

where ε is the assumed fraction of contamination in each
predictor. For any high breakdown point estimator, tuned to
have the highest possible breakdown point (50%), Fig. 1
illustrates the dependence of tolerable predictor contamination
on the dimension p. Already the dimension p = 13 requires
the contamination of each predictor to be lower than 5%, in
order not to exceed the highest possible breakdown point.

III. OUTLIER-CORRECTED-DATA-(ADAPTIVE) LASSO
(OCD-(A) LASSO)

We propose to remove outlier contaminated cells in X
and calculate interpolated values for the removed cells for
each predictor. After outlier removal a classical Lasso is
applied. Detecting the outliers requires the computation of an
outlyingness matrix that is based on the following weights.
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Fig. 1. Tolerable fraction of outlier contamination of every predictor as a
function of the dimension p.

A. Weights to Incorporate Stahel Donoho Outlyingness (SDO)
and Predictor Outlyingness (PO)

We apply the concept of Stahel Donoho Outlyingness
(SDO) [12] and adjust it in a similar vein to the Adjusted Sta-
hel Donoho Outlyingness of [13]. Let B = {b1,b2, . . . ,bn} ⊂
Rp be a set of n observations. Then, the robust Stahel Donoho
outlyingness is given by

r(bi,X) = sup
a∈Sp

|aTbi −med(aTX)|
mad(aTX)

, i = 1, . . . , n, (5)

where Sp = {a ∈ Rp : ‖a‖2 = 1} and med(·) and mad(·)
denote the median and the median absolute deviation. Since we
assume that most data points flagged by the SDO as outliers
are not outlying in all of their components, the SDO can be
extended by also taking into account the outlyingness of the
predictors. The idea that has been introduced in [13] in a
similar vein, is to adjust the SDO of every observation by
taking into account the outlyingness of every single predictor.
This gives us the Predictor Outlyingness (PO)

cj =
1

n

n∑
i=1

|xij −med(xj)|
mad(xj)

, j = 1, . . . , p. (6)

Combining both, the SDO and the PO, we introduce an
outlyingness-matrix, whose (i, j)-th element is

rij = αri + (1− α)cj , i = 1, . . . , n, j = 1, . . . , p. (7)

We chose the tuning parameter α ∈ [0, 1] to be 0.5 throughout
this paper, to equally weight the SDO and the PO, in order
to perform well in both contamination models, i.e. the THCM
and the ICM. Finally, we apply a weight function w(·), e.g.
the Huber weight function

w(r) = 1(r≤chuber) + (chuber/r)
2
1(r>chuber), (8)

with chuber being a tuning constant, to each cell of the
outlyingness-matrix defined in (7). Each entry of the outlier-
detection-matrix is used to determine if the corresponding cell
in the predictor matrix X is outlying or not.
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B. OCD-(A) Lasso

Let Ωj denote the set of indices belonging to the j-
th predictor and having the cardinal number |Ωj | = n,
Cj = {i : |w(rij)| < tj} ⊂ Ωj the subset of indices
belonging to the cells of the j-th predictor, which are flagged
as outliers, and Sj = Ωj\Cj the set of indices belonging to the
unflagged cells of the j-th predictor1. With this notation and
tj being a threshold value, the following algorithm describes
the proposed OCD Lasso. A further example is given in the
simulations.

Algorithm 1: (OCD-(A) Lasso)
1) If i ∈ Cj and i ∈ {1, n}, then replace xij by the median

of the j-th predictor.
2) If i ∈ Cj \ {1, n}, then replace xij by a value obtained

by linear interpolation:

xij := xkj + i · xkj − xlj
k − l

, (9)

where k, l ∈ Sj are chosen, so that l < i < k and
d := k − l is minimized.

3) Repeat Steps 1 and 2 for every predictor j ∈ {1, . . . p}
to obtain the outlier corrected matrix XOCD.

4) Carry out the Lasso and/or the adaptive Lasso based on
XOCD.

IV. COMPUTATION OF THE WEIGHTS

The main challenge of calculating the weights, is to compute
the supremum in the SDO, because the cardinal number of Sp
is infinite and the objective function is non-convex. Therefore,
we need to apply a random search algorithm to obtain an
approximation of the supremum. We chose to take a sub-
sample from Sp by sampling from a (p−1)-dimensional unit-
hypersphere [14]. We use Algorithm 2 to obtain Sp, which we
require in Eq. (5).

Algorithm 2: (Sampling From a (p − 1)-Dimensional Unit
Hypersphere)

1) Generate p vectors with k entries

xj = (x1j , x2j , . . . , xkj)
T , j = 1, . . . , p, (10)

where xij ∼ N (0, 1).
2) Calculate k p-dimensional vectors

ai =

p∑
j=1

xij√
x2i1 + x2i2 + . . .+ x2ip

· ej , i = 1, . . . , k,

(11)
where ej is the j-th unit vector.

3) Set Sp := {ai ∈ Rp : i ∈ {1, . . . , k}}.
For increasing p, a larger subsample is needed. Our simu-

lations indicate that a subsample size of approximately 1,500
for p ≤ 15 and 10,000 for p ≤ 50 suffices in the case of
our proposed estimator. Figure 2 illustrates the results of our

1It is possible to define the set Cj in different ways. E.g., if we assume that
there are no more than 20% of outliers in a single predictor, Cj can be defined
as: Cj = {i : |w(rij)| ≤ (|w(rij)|)d0.2·ne:n}, where (|w(rij)|)1:n ≤
(|w(rij)|)2:n ≤ . . . ≤ (|w(rij)|)n:n is the order statistic.

(a) |S3| = 50

(b) |S3| = 200

(c) |S3| = 500

Fig. 2. Illustration of the Results of Algorithm 2 for S3.
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algorithm for S3 and (a) |S3| = 50, (b) |S3| = 200 and (c)
|S3| = 500.

Theorem 1
The random vector ai, i = 1, . . . , n, generated by Algorithm
2 has the uniform distribution on the (p−1)-dimensional unit
hypersphere

Kp−1 := {x ∈ Rp : ‖x‖2 = 1}. (12)

Proof of Theorem 1
We need to show that ai lies on the (p− 1)-dimensional unit
hypersphere and that ai is uniformly distributed there.

1)

ai =

p∑
j=1

xij√
x2i1 + x2i2 + . . .+ x2ip

· ej =
xi
‖xi‖

⇒ ‖ai‖ =

∥∥∥∥ xi
‖xi‖

∥∥∥∥ =
‖xi‖
‖xi‖

= 1

This shows that ai lies on the (p− 1)-dimensional unit
hypersphere.

2) The only distribution on the (p − 1)-dimensional
hypersphere, which is invariant under rotations, is the
uniform distribution [15]. So, we only need to show
that the distribution of ai is invariant under rotations
and the proposition follows.

Let R be an orthogonal matrix with determinant
1. Then

ai,R =
Rxi
‖Rxi‖

=
Rxi
‖xi‖

.

The second equation follows from the fact that the scalar
product norm is preserved under orthogonal mappings.
With xi ∼ Np(0, Ip) and therefrom xi

‖xi‖ ∼ Np(0, Ip)
and the invariance of the standard normal distribution
under rotations, the proposition follows.

�

V. SIMULATIONS

To evaluate the OCD Lasso estimator, we conduct Monte-
Carlo experiments with a setup similar to [16], which is one of
the few papers that consider the ICM. As benchmark compar-
ison we consider the classical OLS Lasso [2], MM Lasso [8],
and adaptive MM Lasso [8]. For the MM Lasso and adaptive
MM Lasso we use the S-ridge estimator as an initialization and
use a bisquare ρ function with a clipping constant c = 3.44,
which are the standard settings as proposed in [8]. For the

OCD Lasso we use a threshold value of tj =
(

chuber

10·mad(xj)

)2
,

with chuber = min(
√
χ2
p(.5), 4). We use k = 105 samples

to calculate the supremum in the SDO. For all methods, the
penalty parameter λ is chosen as the value that provided the
lowest mean squared error compared to the ground truth. This
is done to evaluate the performance independent of the choice
of λ. Obviously, in practical situations, methods like cross
validation or information criteria are applied instead.

A. Experiment 1: n > p, cell-wise outliers, uncorrelated
predictors

We consider n = 100 observations with p = 15 regression
coefficients taking values βj = j/p for j = 1, ..., 5, 10, ..., 15,
and to obtain a sparse setup, βj = 0 for j = 6, ..., 9.
The predictors xi are independent and identically normally
distributed, i.e., µ = 0,ΣΣΣ = III . The responses yi are created
according to

yi = xiβββ + ei, ∀i ∈ {1, ..., n}, (13)

where the error ei is zero-mean independent and identically
normal distributed with variance σ2 = 0.52. To simulate
cell-wise outliers in the predictor matrix, we contaminate
0%, 1%, 2%, 5% and 10% of the entries of the regression
matrix randomly with samples drawn from a contaminating
distribution N (0, 1002).

To measure the accuracy of the parameter estimation, we
calculate the average mean squared error (MSE) over R = 100
Monte Carlo experiments:

MSE =
1

R

R∑
r=1

1

p

p∑
j=1

(β̂
(r)
j − βj)

2,

where β̂(r)
j is the jth element of the parameter estimate in the

rth Monte Carlo experiment.
Table I shows that the OLS Lasso breaks down for only

1% cell-wise outliers in the regression matrix. Further, even
the high-breakdown MM Lasso and adaptive MM Lasso do
not perform much better for cell-wise outliers.

B. Experiment 2: p > n, column-wise outliers, correlated
predictors

We consider a challenging setup of n = 25 observations
with p = 50 regression coefficients taking values β1 = 1, β2 =
1.5, β3 = 2, β4,...,10 = 0.3, β11,...,50 = 0. The model is thus
highly sparse. X is generated from a p-dimensional normal
distribution N (0,Σ), where the elements of Σ are defined by
0.5|i−j|, 0 ≤ i, j ≤ p, i.e., the predictors are correlated. The
responses are created according to (13). In this experiment, we
consider column-wise outliers that are defined as follows. A
set of predictors is randomly selected with probability ε. For
the selected predictors, 30 % of the entries are contaminated by
additive outliers from a contaminating distribution N (0, 252).

To evaluate the prediction accuracy we calculate the root
mean squared prediction error (RMSPE)

RMSPE =

√
1

n
‖ytest −Xtestβ̂‖22,

where the test data ytest, Xtest is generated as described above,
but leaving out the contamination. Table II, which provides
the averages over 100 Monte Carlo experiments shows that
the proposed OCD Lasso outperforms its competitors for all
contamination probabilities.
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ε = 0.00 ε = 0.01 ε = 0.02 ε = 0.05 ε = 0.1

OLS Lasso 0.31 27.02 28.88 29.82 29.90

MM Lasso 0.27 16.33 24.24 29.39 29.76

MM Ad. Lasso 0.27 16.32 24.24 29.37 29.76

OCD Lasso 0.31 2.13 4.01 16.95 26.58

TABLE I
n ·MSE OF DIFFERENT REGRESSION ESTIMATORS FOR UNCORRELATED PREDICTORS WITH CELL-WISE OUTLIERS OF PROPORTION ε

ε = 0.00 ε = 0.1 ε = 0.2

OLS Lasso 1.29 1.91 2.18

MM Lasso 1.63 1.92 2.48

MM Ad. Lasso 1.55 1.71 2.41

OCD Lasso 1.22 1.43 1.79

TABLE II
RMSPE OF DIFFERENT REGRESSION ESTIMATORS FOR CORRELATED

PREDICTORS AND p = 50, n = 25 WITH ICM OUTLIERS, WHERE
PREDICTORS ARE RANDOMLY CONTAMINATED WITH PROBABILITY ε.

ONLY FOR THESE PREDICTORS, 30 % OF THE ENTRIES ARE
CONTAMINATED BY ADDITIVE OUTLIERS.

C. Computation Time

A major benefit of the OCD Lasso compared to the MM
Lasso is the much lower computation time. The reason is
the iterative nature of the MM Lasso and adaptive MM
Lasso compared to the possibility of calculating the whole
regularization path at once for the OCD Lasso. Eq. (1) is
efficiently solved by the LARS algorithm [17]. Table III
provides the average computation times, the number of Lasso
problems that are solved during the estimation process, and if
the whole regularization path can be calculated at once using
a LARS type algorithm.

comp. time # of Lasso LARS

OLS Lasso 0.05s 1 X�

MM Lasso 127.41s 3192 �

MM Ad. Lasso 212.69s 6662 �

OCD Lasso 1.81s 1 X�

TABLE III
AVERAGE COMPUTATION TIMES ON AN INTEL(R) CORE(TM) I7-4510U

WITH 8 GB RAM FOR ONE MONTE CARLO RUN, NUMBER OF REQUIRED
LASSO COMPUTATIONS, AND POSSIBILITY FOR FAST COMPUTATION USING

LARS [17].

VI. CONCLUSION

In [18], P. J. Rousseeuw et al. state that ”recently re-
searchers have come to realize that the outlying rows paradigm
is no longer sufficient for modern high-dimensional datasets”.
We take this statement of leading researchers in the field of
robust statistics as a warning, especially when applying robust
methods in high dimensional settings. The presented OCD
Lasso is our first step in this direction, we will next consider a
real data application, as well as the extension of the proposed
outlyingness measure to other Lasso estimators.
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