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Abstract—Text-to-speech (TTS) systems are often used as part
of the user interface in wearable devices. Due to limited memory
and computational/battery power in wearable devices, it could
be useful to have a TTS system which requires less mem-
ory and is less computationally intensive. Conventional speech
synthesis systems has separate modeling for pitch (F0-model)
and spectral representation, namely Mel generalized coefficients
(MGC) (MGC-model). In this paper we estimate pitch from the
MGC estimated using MGC-model instead of having a separate
F0-model. Pitch is obtained from the estimated MGC using a
statistical mapping through Gaussian mixture model (GMM).
Experiments using CMU-ARCTIC database demonstrate that
the proposed GMM based F0-model, even with a single mixture,
results in no significant loss in the naturalness of the synthesized
speech while the proposed F0-model, in addition to reducing
computational complexity, results in ~93% reduction in the
number of parameters compared to that of the F0-model.

I. INTRODUCTION

Wearable devices often use speech-based user-friendly in-
terfaces that utilize text-to-speech (TTS) synthesis units as
opposed to text or graphic-based outputs. These devices typ-
ically have a limited memory space and computation/battery
power [1], [2]. In this paper we propose a pitch modeling
approach for the hidden Markov model (HMM) based TTS
system (HTS) [3] that reduces both memory requirements
and computation complexity compared to the existing pitch
modeling approach.

In contrast to the traditional unit concatenation speech
synthesis approaches [4], [5], statistical parametric speech
synthesis has been effective due to its compact and flexible
representation of the voice characteristics [6]. Statistical para-
metric speech synthesis uses source-filter model of speech
and assumes that the phonetic information is conveyed by
the spectral envelope, fundamental frequency or pitch (FO)
and duration of phones. In HTS, the spectral envelope and
pitch are modeled separately from the text input in order
to capture spectral (HTS_MGC-model) and pitch (HTS_FO-
model) characteristics. Each of these models uses its own
decision tree to capture the rich context information [6]—[8].
In the synthesis stage, a given text is converted to the phone
sequence and based on the phonetic context, the HMMs of
the HTS_MGC-model and HTS_FO0-model are concatenated to
generate the spectral envelope and FO respectively. These are
used in the source-filter model to synthesize speech. Typically
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Fig. 1. Tllustration of an original magnitude spectrum (log(|X (f)|)) and the
corresponding MGC derived magnitude spectrum (log(| X prac (f)]))-

the spectral envelope is represented by a 35-dimension Mel
Generalized cepstral co-efficients (MGC) [9] vector.

In various pitch modification algorithms [10], [11], it has
been reported that when the spectral envelope is transformed
according to the change in the pitch contour, it results in
an improved naturalness of the synthesized speech. Separate
modeling of MGC and pitch in HTS may not exploit such
relation between the spectrum and the pitch. Instead of a
separate modeling for pitch, we explore the statistical relation
between the MGC and pitch for modeling the latter in TTS
system. The idea of predicting pitch from the MGC is moti-
vated by the work of Syrdal et al. [12] which has demonstrated
that localized correlation exists between pitch and spectral
envelope or formants, where the correlation between the first
formant and the pitch value in case of vowels is investigated.
Prediction of pitch has also been explored in the literature from
other spectral representations such as MFCC [13], [14], where
the pitch is predicted from MFCC using statistical model like
GMM to reconstruct speech based on a sinusoidal model of
speech. It is known that the harmonic structure in the spectrum
of a voiced sound is due to pitch [15] which in turn can be used
to estimate FO. However, it is not clear how pitch information
could be encoded in 35-dimension MGC. For example, an
original magnitude spectrum and the MGC derived magnitude
spectrum are shown in Fig. 1. It is clear from Fig. 1 that the
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harmonic structure is present in the low frequencies in the
MGC-derived spectrum while this fine harmonic structure is
smoothed out at higher frequencies. This could be due to the
fact that the objective function used to estimate MGCs [9]
weighs the error more in the low frequency region than the
high frequency one. Based on the harmonic structure in the
MGC derived spectrum, we hypothesize that the FO could be
predicted from the MGCs.

The MGCs are calculated so that the unbiased log spec-
tral distance [9] between the generalized log spectrum and
the MGC parameterized spectrum is minimum. This process
involves a non-linear optimization and there is no closed-
form expression representing the MGC given pitch or spec-
trum. Hence, we explore the GMM based statistical model
(MGC_FO-model) to predict the pitch from MGC. During
speech synthesis, original MGCs are not available and MGCs
are estimated from the HTS_MGC-model as shown in Fig.
2. Therefore, we train the statistical mapping between FO
and MGC estimated from the HTS_MGC-model. Experiments
with CMU-ARCTIC corpus [16] reveal that the proposed
MGC_FO0-model, just with a single mixture GMM, results in
a ~93% reduction in the number of parameters required for
modeling FO using HTS_FO-model, without any significant
loss in the naturalness of the synthesized speech.

II. PROPOSED MODEL FOR ESTIMATING PITCH FROM MGC

The proposed MGC_FO-model estimates pitch from the
MGC estimated from the HTS_MGC-model in HTS speech
synthesizer as shown in Fig. 2. The blocks in blue color in
Fig. 2 indicate the components associated with the proposed
model. For the HTS_MGC-model, a context-dependent HMM
is trained using the MGCs computed from speech and the
corresponding text [7] using a decision tree. In order to train
the proposed MGC_F0-model, the MGCs are estimated from
the trained HTS_MGC-model for the phone labels in the
training set with durations same as those of natural speech
so that we get time-aligned pitch and MGC. The estimated
MGC (x;) and the original pitch (f;) in the i-th frame are
concatenated to form a single vector y; = [xiT fi]T, where
[.]7 is the transpose operator. The Probability density function
(PDF) of y; is modeled using a GMM with M mixtures.

M
p(fi7xi) = p(Yl) = ZakN(y17MZ7EZ)7 (1)

k=1

where N (y;; py,XY) is a normal distribution with the aug-
mented mean vector yj consisting of the mean MGC vec-
tor () and the mean pitch (ui), covariance matrix ZZ
comfprising cross-covariance matrices of the pitch and MGC
(X" or Zix), covariance matrix of the MGCs (X7%) and
variance of the pitch (Eif ). Finally, o denotes the mixture
proportion.

Let there be N voiced frames in the training set. The GMM
in eq. 1 is trained with {y; : 1 < ¢ < N} using EM algorithm.
Once the GMM parameters are learnt, the pitch is estimated
from the MGCs using two methods, namely, minimum mean
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Fig. 2. Block diagram summarizing how the proposed MGC_F0-model is
used in the HTS speech synthesizer

squared error estimation and maximum likelihood estimation
with dynamic features. The details of these methods follow.

A. Minimum mean squared error estimation

The minimum mean squared error estimate minimizes the
mean square error between the original pitch f and the esti-
mated pitch f; given the MGCs (x;) [14]. This leads to f; =
S ney Pr(3) B (x1) where By (x;) = (uf+3{"(257) 1 (x:—
pE)T) and py(x;) is the weight of k-th mixture given MGC
(Xi), i.e., v <o
Pr(Xi) = Efdojjzg();\}’(ilj/i”kﬂ)}”)

B. Maximum likelihood estimation using dynamic features

In the case of minimum mean squared error estimator, the
pitch is estimated independently in each frame. However, the
pitch values in adjacent frames are often correlated. Hence we
use maximum likelihood estimation using dynamic features
method [17] to exploit this correlation and improve the pitch
prediction accuracy by considering the velocity (Af) and
acceleration (A2 f) component of the pitch. The joint PDF
of yi = [xil f; Af; A%f;]T is modeled using GMM in eq. 1.
The sequence, f;(1 < i < N), given the sequence of MGCs
(z;,1 < i < N) is estimated by following the work by Toda
et al [17].

III. EXPERIMENTS AND RESULTS
A. Corpus description

The experiments are performed using the SLT (female)
speaker’s data from the CMU-ARCTIC database [16]. The
audio is recorded at 16kHz sampling rate and 16-bit resolution.
Following the work by [3], the audio is upsampled to 48kHz.
The database contains 1132 utterances among which 1000
utterances are selected randomly as the training set and 132
utterances are used for testing [18].
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B. Experimental setup:

The MGC and pitch parameters are extracted with a window
length of 25ms and a shift of 5 ms. The y=0 and «=0.55 are
used to calculate 35-dimension MGCs. All experiments are
performed using HTS [3], [9].

1) Baseline system: HTS_MGC-model is obtained by train-
ing context-dependent HMM having S5-states with Gaus-
sian density with diagonal covariance matrix using 105-
dimensional MGC vector (including velocity and acceleration
coefficients) and the training labels. Similarly, the logarithm
of pitch features and its velocity/acceleration coefficients are
modeled separately using context-dependent HMM having 5-
states with Gaussian density with diagonal covariance matrix
to get the HTS_FO-model. This also estimates the voiced
and unvoiced labels in each frame and the corresponding
model is denoted by HTS_vuv-model. Minimum description
length (MDL) based state clustering [8] is performed for both
HTS_F0-model and HTS_MGC-model to group the parame-
ters of the context dependent HMMs at the state level. The
MDL weighting (A=1) factor provides a balance between the
likelihood improvement and model complexity in MDL. As
shown in Fig. 2, given a text during synthesis stage, the
MGCs and log(FO) are estimated using HTS_MGC-model
and HTS_FO-model considering global variance (GV) to avoid
over-smoothing [19], [20]. The duration of each state is found
by force aligning the natural speech with the text using the
HMM. Given the duration of the each state, the MGCs are
estimated from the HMM so that a frame by frame comparison
between the synthesized and the natural speech can be made.

2) Proposed method: In the training part of the proposed
MGC_F0-model, as shown in Fig. 2, original pitch from all
voiced frames is used along with the estimated MGCs from
HTS_MGC-model to train a GMM with M mixtures using
eq. 1. Given a text during synthesis stage, the MGCs and
voiced/unvoiced decisions are estimated from the HTS_MGC-
model and HTS_vuv-model. Once the estimated MGCs are
available in the voiced frames, the pitch trajectory is estimated
using minimum mean squared error and maximum likelihood
estimation using dynamic feature methods. These are denoted
by MMSE and MLED respectively, where M is varied as 1,
2,4, 8, 16, and 64.

3) Evaluation: Root mean squared error (RMSE) between
the original and the predicted pitch contours in a voiced
segment is used as a metric for evaluation. This metric is
not highly correlated to the naturalness of synthesized speech.
However RMSE has been used to objectively measure the
prediction accuracy of the acoustic models [7].

Apart from the pitch prediction error, it is also important
to evaluate the quality of the synthesized speech using the
proposed MGC_FO0-model. For this purpose, we use the Per-
ceptual Evaluation of Speech Quality (PESQ) [21]-[23] of the
synthesized speech with respect to the original speech.

In addition to PESQ, subjective listening test is performed
with 10 listeners on randomly selected 20 test sentences.
The naturalness of the synthesized speech was assessed by
the mean opinion score (MOS) test method [24]. Speech
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Fig. 3. RMSE based comparison of HTS_F0-model, MGC_F0-models for
different values of M with original and estimated MGCs, i.e., MMSE, MLED,
OMMSE, OMLED. The RMSE for HTS_F0-model does not depend on M.
The bar plot shows the average RMSE with error-bar indicating the SD.

samples were presented in random order for all chosen 20 test
sentences from MMSE (M = 1,8) and MLED (M = 1,8)
as well as using HTS_FO-model. Thus, in the MOS test,
each listener provided scores for a total of 100 synthesized
audio samples. In the MOS test, after listening to each test
sample, the listeners were asked to assign the sample with a
naturalness score in a five-point scale — 1-bad, 2-poor, 3-fair,
4-good, S-excellent [18]. In order to check the consistency
of each listener, twenty randomly chosen test samples were
repeated in the listening test resulting a total of 120 (=100+20)
test samples. All 10 listeners were found to be consistent
in providing the naturalness score in at least 16 among 20
repeated test samples.

C. Results and discussion

Fig. 3 shows the mean and standard deviation (SD) of the
RMSE across 132 test sentences when M is varied. It is clear
from the figure that for the proposed method, the average
RMSE does not change significantly when M is varied. When
averaged across all M, the average RMSE from MMSE and
MLED are found to be 2.1Hz and 1.7Hz (absolute) higher than
that from the baseline HTS_FO0-model.

The MGCs estimated from the HTS_MGC-model are used
in the proposed MGC_FO-model. We also examine the accu-
racy of the pitch predicted using minimum mean squared error
and maximum likelihood estimation using dynamic feature
methods in the proposed MGC_FO0-model when the original
MGC:s are used, denoted by OMMSE and OMLED. It should
be noted that when original MGCs are used, we avoid the error
in the pitch prediction contributed by the MGC estimation
error from the HTS_MGC-model. Hence using original MGCs
would give a lower bound on the RMSE of the predicted pitch
using MGC_FO-model. It is clear from Fig. 3 that the average
RMSE is lower by ~4Hz when the original MGCs are used
compared to when the estimated MGCs are used. In fact, the
average RMSE values from OMMSE and OMLED are found
to be significantly lower (p < 1072%) by 2.74 Hz and 3.86Hz
from HTS_FO0-model when averaged for all M. This suggests
that the pitch could be predicted from the original MGC with
lower error than that from the text. From Fig. 3 it is clear
that the RMSE of the pitch prediction reduces consistently
for OMLED as the number of mixture increases. The average
(SD) RMSE for M=64 is 7.73 (£ 2.38) Hz.

1681



2017 25th European Signal Processing Conference (EUSIPCO)

W-iso [vmse | |meo  [lleMcc_oRG

Number of Mixtures (M)

Fig. 4. PESQ based comparison of HTS_F0-model, EMGC_ORG, MMSE
and MLED for different M. For HTS_F0-model and EMGC_ORG, PESQ
does not depend on M. The bar plot shows the average PESQ with error-bar
indicating the SD.

TABLE I
COMPARISON OF THE MOS SCORE FOR DIFFERENT TECHNIQUES.
MGC_F0-model
MOS HTS_F0-model MMSE MLED

M=1 1 M=8 | M=1 | M=8

Average 3.10 2.98 3.05 2.90 3.04
SD 1.33 0.95 1.11 1.15 1.14
p-value - 0.39 0.68 0.18 0.77

The PESQ is calculated between the synthesized and natural
speech for 132 test sentences. PESQ values are shown in Fig.
4. The average PESQ for the proposed method (MGC_FO-
model) is higher compared to the baseline system by ~0.16
(absolute) for MMSE method and ~0.21 (absolute) for MLED
method when averaged across all M. The difference is statis-
tically significant (p < 10~%) for both MMSE and MLED and
for each M. We also examine the PESQ between the natural
speech and the speech synthesized with estimated MGC and
natural pitch contour, denoted by EMGC_ORG. In the absence
of any pitch prediction error, this provides an upper bound on
the PESQ of the estimated pitch using any pitch prediction
model for the given HTS_MGC-model. When averaged across
all M, the PESQ for EMGC_ORG is found to be higher than
those from HTS_FO0-model, MMSE and MLED by 1.02, 0.86
and 0.81 respectively. This indicates that there is room for
improvement in PESQ by developing better pitch prediction
models.

The MOS scores given by the 10 listeners across 20
utterances for different techniques are shown in Table I.
The difference in the MOS scores given by HTS_F0-model
and the proposed techniques are not statistically significant
as indicated by the p value in Table I indicating that the
synthesized speech with the proposed pitch predictive model
is as natural as that with the pitch model of the HTS although
the later has a lower RMSE in the estimated pitch than the
former.

The number of parameters required by the proposed
MGC_F0-model in contrast to the HTS_FO-model [18] is
shown in Table II. In the proposed MLED, the GMM of M
mixtures requires D X D x M + D x M + M number of
parameters where D is the dimension of the feature vector. The
MLED and MMSE require D=38 (35 MGCs+ static, A, A2
pitch) and 36 respectively. The number of parameters required
for MLED and MMSE with percentage reduction in compar-
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TABLE II
COMPARISON OF THE NUMBER OF PARAMETERS BETWEEN
HTS_FO0-MODEL AND MGC_F0-MODELS FOR DIFFERENT M .
PERCENTAGE REDUCTION FROM HTS_F0O-MODEL (20K) AND TOTAL
NUMBER OF PARAMETERS REQUIRED FOR HTS_FO+HTS_MGC-MODEL
(255K) ARE SHOWN IN BRACKETS

o | MMSE \ MLED \
\ FO [ MGCHF0_| FO [ MGC+F0_|
1 1.3k(93.4%) | 236k(7.4%) | 1.4k(92.7%) | 237k(7.3%)
2 | 2.6k(86.8%) | 237k(6.9%) | 2.9K(85.4%) | 238k(6.9%)
4 | 53K(73.7%) | 240k(5.8%) | 5.0k(70.8%) | 240Kk(5.6%)
8 | 10.0k(47.5%) | 245k(3.7%) | 11.8k(41.6%) | 245k(3.3%)
16 | 21.32k(-4.9%) | 256k(-03%) | 23.7K(-16.7%) | 256k(-1.3%)

ison to HTS_FO model is shown in Table II (column titled
‘FO’). In column titled ‘MGC+F0’, it shows the percentage
reduction when the number of parameters for HTS_MGC-
model are added to FO-models. It is clear that the largest
reduction occurs for M=1, for which the naturalness of the
synthesized speech does not alter significantly (as seen from
Table I) in comparison to the HTS suggesting the benefit of
the proposed technique in terms of the number of parameters
without compromising the synthesis quality.

The HTS_FO-model uses maximum likelihood parameter
generation [20] and GV method [19] to find the pitch tra-
jectory, which uses the Newton-Raphson method [19], [20],
which, in turn, requires computation of the derivative and the
Hessian matrix of the likelihood function. This would have a
large computational cost, which increases with the duration of
the synthesized speech (the number of frames). On the other
hand, both MMSE and MLED have closed form solutions
which do not require computation of derivative or Hessian.
Also both MMSE and MLED methods are applied on the
voiced frames unlike the Newton-Raphson based optimization
over all frames for speech parameter generation [19], [20].
Thus, the computational cost of MMSE and MLED methods
depends on the duration of the voiced region. The length
of the voiced region being less than the duration of the
entire utterance, the MMSE and MLED methods would have
a lower computational cost compared to the HTS_F0-model
based pitch trajectory estimation. In fact, the computational
cost drops with decreasing M. In particular, the MMSE with
M=1 results in a linear transform of MGC to predict the
pitch highlighting the computational advantage of the proposed
model over HTS_FO-model.

IV. CONCLUSIONS

We propose a pitch modeling approach based on MGC in
the speech synthesis framework. The proposed pitch modeling
approach reduces the number of parameters as well as compu-
tational cost compared to the pitch modeling (HTS_FO0-model)
present in the HTS speech synthesizer. We show that the pitch
prediction accuracy of the proposed model is mainly limited
by the quality of the MGCs estimated from the HTS_MGC-
model. Even though the pitch prediction accuracy from the
estimated MGC:s is lower than the HTS_FO-model, the speech
synthesized using the proposed pitch model achieves sig-
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nificantly higher PESQ score and listening tests show no
significant difference in the naturalness of the synthesized
speech compared to the HTS_F0-model. The proposed MLED
considers exploiting the correlation between the adjacent sam-
ples and it also causes over-smoothing. Further improvement
on the pitch prediction can be made by considering the GV
for MLED similar to the HTS_FO0-model but with increased
complexity. The proposed MGC based pitch modeling can
also be used in Deep Neural Network (DNN) based speech
synthesis framework [7].
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