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Abstract—We propose a regularization function for
hyperspectral image restoration based on a newly-designed
structure tensor. We adopt a convex optimization approach
with the use of the nuclear norm of a matrix, termed as
spatio-spectral structure tensor. It consists of the gradient
components of a hyperspectral image cube w.r.t. the
spatio-spectral domain. The proposed approach allows to
penalize variations in the spectral domain as well as the
spatial domain to exploit the spatio-spectral correlations.
Our experiments on denoising of hyperspectral images
show that the proposed regularization leads to significant
improvements in restoration performance over state-of-
the-art methods.

I. INTRODUCTION

In recent years, image processing for hyperspectral
images with a large number of spectral bands has become
an important issue due to the development of remote
sensing and imaging technologies [1], [2]. Since a hyper-
spectral sensor generally acquires spectral components
covering narrow spectral bands, the illuminance captured
by the sensor becomes low, so noise signals are amplified
together with the luminance.

To extract signals buried in the noise, many denois-
ing methods for the hyperspectral images have been
proposed [3]–[8]. BM4D [3] is a highly accurate non-
local method for images with three or more channels,
which is an extended version of the state-of-the-art 2D
image denoising method [9]. Another effective approach
is regularization based on total variation-type functions
exploiting variations in the spatial domain [5]–[7], which
are stated as convex optimization problems and effi-
ciently solved to estimate a noiseless latent image.

Low-rank-based regularization approaches have also
been actively investigated [10]–[14]. In [13], the cor-
relation of the spatial structure in a local region of a
multi/hyperspectral image is exploited by using struc-
ture tensor total variation (STV), and high-performance
restoration can be achieved without computationally in-
efficient non-local search. This is because STV is defined
as the nuclear norm of the structure tensor, a matrix
consisting of gradient components in a local region, and
thus it can evaluate the semi-local spatial correlation
of images. However, STV does not measure the cor-
relation between bands because it deals with gradient

components for each band independently. To address
this issue, its arranged version (ASTV) [14] has been
proposed. ASTV simultaneously measures correlations
between bands as well as spatial correlations, but it
consists only of gradient components in spatial directions
and does not explicitly exploit smoothness in the spectral
direction.

In this paper, we propose a regularization function
based on the structure tensor consisting of the gradient
components both in the spectral domain in addition
to the spatial domains. The regularization functions is
then defined as the nuclear norm of the said structure
tensor, so that our regularization can effectively promote
the semi-local smoothness both in the spatial and spec-
tral directions. Then, we formulate hyperspectral image
restoration as a convex optimization problem involving
our regularization function, which is efficiently solved
by a primal-dual splitting method [15]–[17]. We apply
our regularization to hyperspectral image denoising and
demonstrate that it outperforms several state-of-the-art
methods, namely, ASTV and BM4D.

II. PROPOSED METHOD

A. Spatio-spectral gradient filter

A hyperspectral image with M bands is denoted as
u = [u′⊤

1 , . . . ,u
′⊤
M ]⊤ ∈ RMN (N is the number of

pixels), where u′
j ∈ RN (j = 1, . . . ,M) is the j-th

band image. The gradient filters w.r.t. the vertical and
horizontal directions in a single band u′

j are defined
as D′

v and D′
h ∈ RN×N , respectively. The matrices

are extended to apply D′
v and D′

h to u, which are
defined as Dv = diag(D′

v, . . . ,D
′
v) ∈ RMN×MN and

Dh = diag(D′
h, . . . ,D

′
h) ∈ RMN×MN , respectively.

The matrix Ds ∈ RMN×MN for derivation w.r.t. the
spectral direction is defined as follows:

Ds =



−I I O . . . . . . O
O −I I O . . . O

...
. . . . . . . . .

...
... O −I I O
...

. . . −I I
O . . . . . . . . . O O


,
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where I ∈ RN×N is an identity matrix and O ∈ RN×N is
a zero matrix. Using Dv, Dh, and Ds, a spatio-spectral
gradient filter matrix is defined as

D = [D⊤
v D⊤

h D⊤
s ]

⊤.

B. Spatio-spectral structure tensor
For a given hyperspectral image u, the gradient image

is represented as Du ∈ R3MN , and constructed by two
spatial gradient images, Dvu and Dhu ∈ RMN , and the
spectral gradient image, Dsu ∈ RMN as follows:

Du = [(Dvu)
⊤ (Dhu)

⊤ (Dsu)
⊤]⊤,

Dvu = [(D′
vu

′
1)

⊤ (D′
vu

′
2)

⊤ . . . (D′
vu

′
M )⊤]⊤, (1)

Dhu = [(D′
hu

′
1)

⊤ (D′
hu

′
2)

⊤ . . . (D′
hu

′
M )⊤]⊤,

Dsu = [(D′
su

′
1)

⊤ (D′
su

′
2)

⊤ . . . (D′
su

′
M )⊤]⊤.

We divide the gradient images into 3D local blocks.
The shape of each local block is a rectangular block
with a square base in the spatial domain, and each block
contains all the bands (e.g. the size of the block is 10×
10×M ). The arrangement of the matrix is illustrated in
Fig.1. We define a new structure tensor of the n-th local
block by rearranging the matrices as follows:

Ln = [Du
(n)
1 Du

(n)
2 . . .Du

(n)
M ] ∈ RN ′×3M , (2)

where N ′ is the number of pixels in a single band of a lo-
cal block. Du

(n)
j = [Dvu

(n)
j Dhu

(n)
j Dsu

(n)
j ] ∈ RN ′×3

(j = 1, . . . ,M), and D∗u
(n)
j consists of the j-th band in

the n-th local block. We call Ln in (2) a spatio-spectral
structure tensor. In the next section, we construct a con-
vex optimization problem with a regularization function
based on the spatio-spectral structure tensor to restore a
latent hyperspectral image.

C. Regularization based on spatio-spectral structure
tensor

In the paper, we focus on hyperspectral image denois-
ing as an example of hyperspectral image restoration.
We remark that our regularization can be applied to
other problems such as non-blind image deblurring and
compressive sensing.

We assume that the degradation process can be mod-
eled as y = u + n, where y ∈ RMN is an observation
image and n ∈ RMN is the additive white Gaus-
sian noise. Regularization based on the aforementioned
spatio-spectral structure tensor can be defined as the sum
of rank(Ln) (n = 1, 2, · · · ,K) with two constraints.
One is a constraint on the intensity range S = [0, 1]MN .
The other constraint represents data-fidelity, defined by
the y-centered L2-norm ball with the radius ϵ > 0
controlling the degree of fidelity to y. Compared with

Fig. 1. Spatio-spectral structure tensor

the standard additive data-fidelity, such a constraint-type
data-fidelity facilitates parameter setting because ϵ has a
clear physical meaning, so that it can be easily adjusted
based on noise standard deviation, as addressed in [18]–
[21]. Specifically we consider the following optimization
problem:

min
x

K∑
n=1

rank(Ln) s.t. x ∈ S, ∥x−y∥2 ≤ ϵ, (3)

where K is the number of extracted local blocks, and
all pixels of x are extracted at least once as a pixel of
a local block. Here, Ln is represented with an operator
Pn : R3MN → R3MN ′

that extracts the n-th local block
as

Ln = PnDx. (4)

Substituting this for Eq.(3) yields

min
x

K∑
n=1

rank(PnDx) s.t. x ∈ S, ∥x−y∥2 ≤ ϵ. (5)

Since rank(·) is the nonconvex function that counts
the number of non-zero singular values, which makes
it intractable to find the optimal solution, we introduce
the nuclear norm ∥ · ∥∗ =

∑
i σi (σi is the singular

values) [22], which is a reasonable convex relaxation
for rank(·). Thus the problem (5) is converted to the
following convex optimization problem:

min
x

K∑
n=1

∥PnDx∥∗ s.t. x ∈ S, ∥x−y∥2 ≤ ϵ. (6)
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We further reformulate (6) into the following form:

min
x

K∑
n=1

∥PnDx∥∗ + ιS(x) + ιBy,ϵ
(x), (7)

where S is the closed convex set used in (3), and the
indicator function is defined as

ιS(x) =

{
0 x ∈ S,
+∞ otherwise.

(8)

The set By,ϵ is defined as By,ϵ = {x ∈ RMN | ∥x −
y∥2 ≤ ϵ} using the prescribed error tolerance ϵ, and
ιBy,ϵ

(x) is defined in the same way as (8).

D. Optimization
For solving the convex optimization problem in (7),

we use a primal-dual splitting (PDS) method [15]–[17].
The PDS handles convex optimization problems of the
form:

min
x

F (x) +G(x) +H(Ax), (9)

where F is a differentiable convex function whose gra-
dient is β-Lipschitz continuous, G and H are possibly
nonsmooth convex functions whose proximity operators
1 are computable, and A is a linear operator. The
algorithm for (9) is given by⌊
x(k+1) = proxγ1G(x

(k) − γ1(∇F (x(k)) +A⊤z(k)) ),

z(k+1) = proxγ2H∗( z(k) + γ2A(2x(k+1) − x(k)) ),
(10)

where ∇F is the gradient of F , A⊤ is the transpose of
A, x is the primal variable and z is the dual variable.
H∗ is the conjugate function of H , and its proximity
operator can be computed using the proximity operator
of H , given by

proxγ2H∗(v) = v − γ2proxγ−1
2 H(γ−1

2 v). (11)

Under appropriate conditions on γ1 and γ2, the se-
quence generated by (10) converges to an optimal solu-
tion of (9). In order to apply PDS to our problem (7),
we define F , G, H , and A as follows

F : RMN → R, x 7→ 0,

G : RMN → R ∪ {∞}, x 7→ ιS(x),

H : RMN ′+MN → R ∪ {∞},

z = [z⊤1 , z
⊤
2 ]

⊤ 7→
K∑

n=1

∥z1,n∥∗ + ιBy,ϵ
(z2),

A : RMN → R3MN ′+MN , x 7→ (PnDx,x),

1The proximity operator (prox) [23], [24] is defined as proxγH(x) =

argmina H(a) + 1
2γ

∥a− x∥22.

Algorithm 1 Algorithm for solving Prob. (7)

1: input : x(0), z(0)1,n(n = 1, ...,K), z(0)2
2: set : γ1, and γ2 are given.
3: while stopping criterion is satisfied. do
4: x(k+1) = PS(x

(k)−γ1(
∑K

n=1D
⊤P⊤

n z
(k)
1,n+z

(k)
2 ))

5: for n = 1 to K do
6: v

(k)
1,n = z

(k)
1,n + γ2(PnD(2x(k+1) − x(k)))

7: z
(k+1)
1,n = v

(k)
1,n − γ2prox 1

γ2
∥·∥∗

( 1
γ2
v
(k)
1,n)

8: end for
9: v

(k)
2 = z

(k)
2 + γ2(2x

(k+1) − x(k))

10: z
(k+1)
2 = v

(k)
2 − γ2prox 1

γ2
ιBy,ϵ

( 1
γ2
v
(k)
2 )

11: k = k + 1
12: end while

where z1,n represents the n-th local block of z1. The
steps of the algorithm for solving (7) are shown in
Algorithm 1, where PS in the 4th line is projection onto
the convex set S , which transfers pixel values within
the range. The proximity operator of the nuclear norm
in the 7th line is obtained by applying singular value
decomposition to Ln and then thresholding the singular
values:

proxγ∥·∥∗
(Ln) = UΣ̃V⊤, (12)

Σ̃ = diag(max{σ1 − γ, 0}, . . . ,max{σ3M − γ, 0}).

The proximity operator of the indicator function ιBy,ϵ

is given by the convex projection onto the l2 ball (10th
line):

proxγιBy,ϵ
(x) =

{
x x ∈ By,ϵ,
y + ϵ

∥x−y∥2
(x− y) otherwise.

(13)

III. EXPERIMENTAL RESULTS
In order to evaluate the performance of the proposed

method, we compare it with ASTV [14] and BM4D [3]
on denoising of hyperspectral images. We assume that
input images are degraded by additive white Gaussian
noise n ∈ RMN with standard deviation of 0.1. The
parameter ϵ in (6) is appropriately changed depending
on the noise intensity. All pixel values are normalized
to within the range [0, 1]. The size of the local blocks
(in the block processing of the nuclear norm in both
of the methods) was set to 10 × 10 × M , and there is
no overlap between them2. As for BM4D, we use the

2On the basis of our experience, the block overlap significantly increases
computational complexity, while we achieve it with only a little improvement
in restoration performance.
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PSNR[dB] / SSIM 19.99[dB] / 0.2703 32.42[dB] / 0.8241 33.49[dB] / 0.8438 34.51[dB] / 0.8923

PSNR[dB] / SSIM 19.99[dB] / 0.2863 32.11[dB] / 0.8273 33.44[dB] / 0.8502 34.29[dB] / 0.8965

PSNR[dB] / SSIM 19.99[dB] / 0.1805 34.22[dB] / 0.8338 35.01[dB] / 0.8617 36.01[dB] / 0.8933
Fig. 2. Results in PaviaC (102 bands) (upper), PaviaU (103 bands) (middle) and Frisco(148 bands) (lower) : from left, Original, Noisy, ASTV [14], BM4D
[3], and ours

MATLAB code published by the authors. Test images
were taken from the images in [8], [25], [26]. In order to
objectively evaluate denoising performance, two indexes:
peak signal to noise ratio (PSNR) and SSIM [27] are
used.

The quantitative evaluation of denoising performance
by PSNR and SSIM is shown in Tables I and II, respec-
tively. The experimental results for three hyperspectral
images, PaviaC (102 bands), PaviaU (103 bands), and
Frisco (148 bands) are shown in Fig.2, in which we
show the 95th band in the PaviaC, the 98th band in the
PaviaU and the 130th band in the Frisco. It can be seen

from Fig.2 that the proposed method can achieve satis-
factory denoising performance while maintaining details
compared to the conventional methods. In quantitative
evaluations in Tables I and II, it can be confirmed that
the quantitative performance of noise removal in the
proposed method outperforms the conventional ones.

IV. CONCLUSION

In this paper, we proposed a regularization method
based on the spatio-spectral structure tensor aiming
at restoration of hyperspectral images. The proposed
method simultaneously exploits two properties. One is
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TABLE I
COMPARISON WITH [14] AND [3] (IN PSNR[DB])

Image (bands) ASTV [14] BM4D [3] Ours
China (7) 32.51 32.02 32.05

Ribeira (33) 34.49 34.62 35.84
PaviaC (102) 32.42 33.49 34.51
PaviaU (103) 32.11 33.44 34.29
Frisco (148) 34.22 35.01 36.01

Stanford (148) 34.45 35.31 36.34
Salinas (224) 35.03 36.76 36.50

TABLE II
COMPARISON WITH [14] AND [3] (IN SSIM)

Image (bands) ASTV [14] BM4D [3] Ours
China (7) 0.8729 0.8534 0.8521

Ribeira (33) 0.8652 0.8740 0.9077
PaviaC (102) 0.8241 0.8438 0.8923
PaviaU (103) 0.8273 0.8502 0.8965
Frisco (148) 0.8338 0.8617 0.8933

Stanford (148) 0.8229 0.8649 0.8846
Salinas (224) 0.8106 0.8720 0.8625

the low-rank property of gradient images w.r.t. the spatio-
spectral directions in the hyperspectral image, and the
other is the correlation between spectral bands. By
solving the convex optimization problem using some
regularization, high performance method in denoising for
hyperspectral images is achieved. The experimental re-
sults demonstrate that the proposed method outperforms
the conventional methods.
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