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Abstract—In this paper, we propose a robust multi-speaker
voice activity detection approach for wireless acoustic sensor
networks (WASN). Each node of the WASN receives a mixture
of sound sources. We propose a non-negative feature extraction
using stability selection that exploits the sparsity of the speech
energy signals. The strongest right singular vectors serve as
source-specific features for the subsequent voice activity detection
(VAD). To separate active speech frames from silent frames,
we propose a robust Mahalanobis classifier that is based on an
M-estimator of the covariance matrix. The proposed approach
can also be applied to a distributed setting, where no fusion
center is available. Highly accurate VAD results are obtained
in a challenging WASN of 20 nodes observing 6 sources in a
reverberant environment.

I. INTRODUCTION

Voice activity detection (VAD), i.e., detecting the presence
or absence of human speech, is crucial for several speech
processing applications, such as noisy speech enhancement
[1], speaker recognition [2], speech coding systems [3], echo
cancellation and hands-free telephony [4]. VAD algorithms
trade off noise sensitivity, precision, and computational com-
plexity and consist of two consecutive phases, namely, speech-
related feature extraction and a discriminating model. Clas-
sical single-speaker VAD methods use energy features [5],
signal periodicity [6], and zero-crossing rates [7]. While other
more sophisticated approaches rely on statistical model-based
speech classification [8], [9]. Compared to single-speaker
VAD, very few solutions exist for the multiple-concurrent-
speaker case. For centralized WASN, [10], [11] propose a
multi-speaker energy pattern extraction by designing an ef-
ficient energy unmixing algorithm. After energy separation,
no VAD is performed in [10], [11]. In [12], independent
component analysis (ICA) is used combined with beampattern
analysis to identify the active speaker and perform VAD based
on the precise knowledge of the direction of arrival of the
speech signals. An integrated multi-source speaker localization
and multi-channel VAD framework is introduced in [13]. The
paper exploits the behavior of the spatial gradient steered
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response power function using the phase transform method.
While in [14], identifying a single target speaker from multiple
speakers is considered. Thus, an energy-based information
from the interfering channels is included to adaptively adjust
the decision threshold of the targeted channel. Recently, a VAD
method [15] is developed that exploits processed information
recorded from a camera-assisted microphone array. Moreover,
a centralized sparse median-based multiplicative non-negative
ICA (M-NICA), abbreviated by SMM-NICA, is proposed
for energy source unmixing in [16]. The idea is to enhance
the energy features with a penalized `1-norm model and
apply a straightforward zero-threshold VAD, which detects
speech activity. Concerning, distributed WASN, the literature
is even scarcer. [17] proposes a distributed multi-speaker VAD
(DMVAD) algorithm that first unmixes and then detects the
activity of multiple interfering energy signals in a WASN.

Contributions: We improve upon [16] and [17] with a
two-step robust solution to the multi-speaker VAD problem
by exploiting sparse coding [18], [19]. The novelty of our
approach lies in first using a sub-sampling stability approach
that selects the degree of sparseness parameter in the penalized
regression suitable for a time-domain sparse energy feature
extraction. Additionally, a subsequent robust classification step
that uses robust Mahalanobis distance based on M-estimation
is performed. Hence, our suggested method addresses the mul-
tiple speech activity detection task and makes it unnecessary
to use an energy unmixing method, as proposed in the SMM-
NICA method in [16]. Both centralized and decentralized
multi-speaker VAD is considered, and in both cases highly
accurate results are obtained.

II. SIGNAL MODEL AND PROBLEM FORMULATION

We analyze an ad-hoc distributed wireless acoustic sen-
sor network (WASN) accommodating N speakers and k =
1, . . . ,K devices. Each device k comprises a uniform linear
array (ULA) equipped with an identical number of microphone
sensing elements Jk. The overall number of microphones
throughout the network is J =

∑K
k=1 Jk. Fig. 1 sketches

the studied audio scenario. A speaker n generates signals
s̃n[η], η = 1, . . . T , where η denotes the sample time index.
The matrix [̃s1, . . . , s̃N ]> ∈ RN×T consists of speech source

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 171



2

column vectors s̃n ∈ RT that are mutually independent and
uniquely labeled using the algorithm presented in [20]. We
assume statistical second-order stationarity for blocks of length
L and define the instantaneous power of a signal s̃n[η] at each
block as

sn[i] =
1

L

L−1∑
l=0

s̃n[iL+ l]2, (1)

where i = 1, . . . , I is the frame index. The sn[i] are stacked in
an N dimensional vector s[i]. The instantaneous noisy signal
power at the jth microphone of the kth device is

yk,j [i] =
1

L

L−1∑
l=0

ỹk,j [iL+ l]2, j ∈ {1, . . . , Jk}, (2)

where ỹk,j denotes the observed signal at the jth microphone
of the kth device. Assuming a centralized network, the system-
wide non-negative yk,j [i] of all devices k are stacked in a
J-dimensional vector y[i]. The mixture is modeled by

y[i] ≈ As[i] + ω[i], i = 1, . . . , I, (3)

with A ∈ RJ×N being the mixing matrix that describes
the power attenuation between speaker n and microphone j.
The additive white noise term ω[i] follows the same design
introduced in Eqs. (1)-(2). In the centralized setup, as in [10],
the instantaneous linear mixtures in Eq. (3) allow for the
estimation of s[i]. Our focus is to extract well-separated sparse
features similar to s[i], which are the input of a subsequent
classification-based multi-speaker VAD.

17

20
15

1

5

6
14

8
11

18

7

12

4

19

16

9

13

3

10

2
S1

S1

S2

S6

S5

S3

S4

B1

B1

B2 B3

B5B4

 B6

Fig. 1: A 20× 10 meter room with a reverberation time of T60=0.3
seconds. The room describes a wireless acoustic sensor network
(WASN) of N = 6 speech sources (black speakers) and K = 20
devices (blue dashed circles). Each device k is equipped with Jk = 3
microphones sampled at 16 kHz.

III. ROBUST AND SPARSE ENERGY FEATURE EXTRACTION
BASED STABILITY SELECTION

Let Y ∈ RJ×I+ denote the matrix composed of entries
y[i], i = 1, . . . , I . Singular value decomposition (SVD)
projects Y onto

SVD(Y) = UΣV>, (4)

where U ∈ RJ×J and V> ∈ RI×I describe the left and
right orthogonal rotations of singular vectors, respectively.

Σ ∈ RJ×I contains the singular values on its diagonal. In
essence, we target a robust derivation of sparse right-singular
vectors. Thus, we suggest as in [16] to impose sparsity-
inducing penalties solely on V within the iterative rank-one
SVD layer extraction. Sparse right rotation components serve
as features for the subsequent VAD phase. Accordingly, we
consider an `1-regularized term that minimizes a penalized
sum-of-squares criterion, such that

argmin
σ,u,v

‖Y − σuv>‖2 + λvΦ(σv), (5)

with u and v being unit vectors of length J and I , respec-
tively. We interpret the right singular vectors v as regression
coefficients of a linear penalized regression fit as to design
their sparse map. λv describes the tuning parameter of the
penalization and Φ(σv) is the `1 regularization function

Φ(σv) = σ
I∑
i=1

|vi|. (6)

Based on the Lasso penalized regression in Eq. (5), the
selection of λv corresponds to selecting the degree of sparsity
of v, i.e., the number of non-zero components in v. In [16],
we use the BIC based penalty parameter selection proposed
in [21]. However, the resulting sparse vectors v require a
subsequent unmixing step, see [16]. In this work, we favor
the use of stability selection [22], [23] to accurately deduce
the sparseness level of the right singular vectors v and thus
determine the minimal penalization value of the regularization
parameter λv. This approach is promising as it surmounts the
imperative use of an unmixing procedure, such as M-NICA.
Let Lv be the set of possible λv parameters that we adapt to
Eq. (5). Every λv ∈ Lv points to a distinct subspace of non-
zero indicators i ∈ I of v denoted Ẑλv

v (J). The probability
of selecting a non-zero coefficient, i.e., P (·) in Eq. (7), is
obtained via estimating the relative selection frequencies of i
pertaining to all possible subsamples J◦ ⊂ J for an arbitrary
threshold τ and a given value λv. The subsamples J◦ are
drawn from J without replacement.

Ẑv =
{
i : max

λv∈Lv

P (i ∈ Ẑλv
v (J◦)) ≥ τ

}
. (7)

Here, Ẑv encloses the stable selection set of non-attenuated
candidates from I . The value of τ is chosen in the range of
[0.6, 0.9] according to [22]. The minimal penalization value
λmin
v that verifies a maximum estimated probability P (·) in

Eq. (7) is used to adjust the components of vi. A component-
wise minimizer derived in [21] that incorporates the minimal
regularization parameter λmin

v is utilized to estimate the ele-
ments of vi, such that

vi =
1

σ

[
sgn

{
[Y>u]i

}(
|[Y>u]i| −

λmin
v

2

)]
. (8)

IV. ROBUST MAHALANOBIS-BASED VAD

A. K-medians Based Speech/Silence Prior Partitioning

Our focus is to first estimate a pair of centroids cq, q =
{1, 2} associated to two separate classes, namely the active
and non-active speech data points Cq, q = {1, 2}, respectively.
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Algorithm 1 Centralized stability selection based sparse fea-
ture extraction and robust Mahalanobis classifier for VAD
(SRM-VAD)

Input: Form Y = (y[1], · · · ,y[I]) ∈ RJ×I+ using Eq. (3).
VAD procedure

1: for n = 1, . . . , N do
2: Minimize Eq. (5) subject to the `1-norm constraints imposed

on the right-singular vector v.
3: Deduce λmin

v through a stability approach that selects the best
set of non-zero indicators i guaranteeing sparsity in v, based
on Eq. (7).

4: Adjust v with its new elements using Eq. (8).
5: Update the singular value σ = u>Yv.
6: Construct a sparse lower-rank matrix Y? = σuv>.
7: Collect the matrix of residue Y = Y −Y?.
8: Based on |v|, extract f in = [f in,1, f

i
n,2, f

i
n,3]
>, ∀i ∈ I ,

with | · | being the absolute value operator.
9: Initial speech/silence segregation Cq based on c>q ,

q = {1, 2}.
10: Compute R̂n,q,∀q using the p-variate tν M-estimator from

Eq. (9).
11: Evaluate robust Mahalanobis distance given in Eq. (10).
12: Decide upon speech activity for source n using Eq. (11).
13: end for

Output: VAD patterns d>1 , · · · ,d>N

For this, we collect three statistical short-term feature series
f in = [f in,1, f

i
n,2, f

i
n,3]> analogous to [17] that well character-

ize the sparse vector v related to a given source n. These
features capture information about the energy average, the
standard deviation, and the energy difference. In this study, we
use the K-medians partitional clustering technique as a robust
variation of the K-means to determine conforming estimates
of the active and non-active centroids, namely cq, q = {1, 2},
respectively, while utilizing the features f in. A centroid c>q
is defined as a 3-dimensional vector accommodating the
individual centroids relating to the energy average feature,
the standard deviation, and the energy difference features at
the speech/non-speech clusters. Subsequently, we form two
disjoint classes Cq, q = {1, 2}, of speech/silence by assigning
the realizations of f in to the closest class Cq depending on
their corresponding distances to the estimated centroids cq .

B. Robust Mahalanobis-Based Speech Detection

In this subsection, we design a Mahalanobis-based similarity
measure using the robust p-variate tν M-estimator of ν degrees
of freedom, see [24], for the estimation of the covariance
matrix R̂n,q, q = {1, 2}, of the speech/non-speech feature’s
distributions, respectively. The latter can be formulated as

R̂n,q =
1

#(Cq)

#(Cq)∑
i=1

uν(C>q,iR̂
−1
n,qCq,i)Cq,iC

>
q,i, (9)

with uν(t) = p+ν
ν+t being the weight function, p the dimension

of f in, t = C>q,iR̂
−1
n,qCq,i, and R̂−1n,q corresponding to the

inverse covariance matrix. The symbol #(·) represents the
cardinality operator. The robust Mahalanobis distance for the
speech/silence classes then becomes

Mq(f
i
n) =

√
(f in − ĉq)>R̂−1n,q(f in − ĉq), (10)

Next, speech activity is determined following the decision rule

din =

{
1 if M1(f in) < M2(f in)
0 otherwise. (11)

The proposed multi-speaker stability selection based sparse-
ness combined with the robust Mahalanobis classifier for VAD
(SRM-VAD) is summarized in Alg. 1.

V. DISTRIBUTED STABILITY BASED SPARSENESS AND
ROBUST MAHALANOBIS CLASSIFIER FOR VAD

Assuming a distributed network of devices, our aim is to
obtain speaker-specific VAD patterns using clusters of devices
that share a common interest in the described multi-source
scheme in Fig. 1. A preliminary divide-and-conquer-based
approach is performed. To do this, we apply the LONAS
algorithm, see [17], which partitions the network into N
clusters by grouping devices around a unique dominant source
based on adaptive distributed eigenvalue decomposition. Fig-
ure 1 illustrates the resulting device clusters (dashed red), each
observing a specific source of interest n. We define Bn as the
set of devices k that observe speaker n as a dominant source.
Based on this distributed device structure, we construct the
(Jk#(Bn))-dimensional vector yBn

[i] by stacking the non-
negative yk,j [i] for every device k present in Bn. #(Bn) is
the device cardinality for a given source n. Based on Eq. (3),
the dominant source model becomes

yBn
[i] ≈ aBn

s[i] + ωBn
[i], i = 1, . . . , I. (12)

Here, aBn
, ωBn

[i] ∈ RJk#(Bn)×1 reduce to the mixing vector
and noise for the ensemble of devices in Bn. In such a
distributed setup, our goal is to provide a sparse estimate
v̂Bn

[i] by observing only the linear mixture yBn
[i]. The

vectors v̂Bn [i],∀n ∈ N, are features used to decide upon
speaker-specific activity as outlined in Alg. 2.

Algorithm 2 Distributed stability selection based sparseness
and robust Mahalanobis classifier for VAD (DSRM-VAD)

1: for n = 1, . . . , N do
2: YBn = (yBn [1], . . . ,yBn [I]) ∈ R(Jk#(Bn))×I

+ using
Eq. (12).

3: Perform Alg. 1. (2) until Alg. 1. (7) to extract a unique sparse
layer of YBn and deduce a speaker-specific v for source n.

4: Apply Alg. 1. (8) until Alg. 1. (12) based on the vector |v|
related to source n.

5: Extract the speaker-specific VAD pattern dn for the current
observations in YBn .

6: end for

VI. RESULTS FOR VAD

1) Centralized Two-Source Scenario Use-Case: We assess
the outcome of our proposed VAD approach on the basis of a
centralized multi-speaker WASN presented in Fig. 1 with two
simultaneously active speech sources S1 and S6 and an addi-
tive white Gaussian noise (AWGN) of variance σ2

ω = 0.01. In
this case, the speech mixture is recorded at every device as
shown in Eq. (3). We apply the centralized SRM-VAD method
summarized in Alg. 1 on the collected noisy speech mixture Y.
The degree of freedom for the robust Mahalanobis is empiri-
cally chosen as ν = 49. Figure 2 shows the impact of choosing
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ν on the correct detection (CD), misdetection (MD), and false
alarm (FA) rates. From Tab. I, we see that the proposed
SRM-VAD noticeably outperforms M-NICA in speech activity
decision. More than 95% of CD is achieved as displayed in
Tab. I. Additionally, we deliver the generated decisions when
the proposed standalone sparseness based stability selection
for VAD (S-VAD) and its improved version with Mahalanobis
distance (SM-VAD) are considered. Comparable results are
drawn from both SM-VAD and the fully robust version SRM-
VAD. Both algorithms outperform S-VAD for S1. Meanwhile,
marginally decreased performance is obtained for S6. This is
explained by the concern of stability selection in reducing Type
I error rates, while the proposed improved versions SM-VAD
and SRM-VAD are biased towards misdetection reduction.
Our justification is clearly supported by the measures given
in columns MD and FA of Tab. I. Moreover, we assess the
separation quality reached by M-NICA and the introduced
sparse stability-selection-based methods for VAD. For this, we
measure the signal-to-distortion ratios (SDR) as exhibits Tab. I.
Distinctly superior separation quality is reached in the energy
signatures used for our proposed VAD approaches. We also
achieve less distorted signals compared to the SMM-NICA.

Centralized Use-Case

Variance Source Method CD (%) MD (%) FA (%) SDR

σ
2 ω

=
0
.0
1

S1

M-NICA [10] 62.4 1.9 35.7 -3.23

SMM-NICA [16] 87.2 5.8 7 7.63

S-VAD 80.7 6.5 12.8 6.9

SM-VAD 85.44 1.92 12.64 6.9

SRM-VAD 85.03 1.52 13.45 6.9

S6

M-NICA [10] 54.7 1.1 44.2 5.75

SMM-NICA [16] 80.7 0.9 18.4 5.4

S-VAD 96.1 2 1.9 5.91

SM-VAD 95.3 1.3 3.4 5.91

SRM-VAD 95.45 0.4 4.15 5.91

TABLE I: Comparative results of the original M-NICA [10], SMM-
NICA [16], and the proposed S-VAD, SM-VAD, and the SRM-VAD
(with ν = 49), in a centralized scenario of two sources (S1 and S6)
with AWGN of variance σ2

ω = 0.01.

2) Distributed Multi-Source Scenario Use-Case: As a sec-
ond experiment, we consider a WASN observing six speech
sources, see Fig. 1, affected with AWGN of variance σ2

ω =
0.01 variance. We deal with grouped devices following their
unique dominant source [17]. Devices hearing a source with
higher power are more likely to cluster together in order to
cooperate for an accurate VAD. Eq. (12) accumulates mixtures
from clustered devices per primary dominant source. For the
scenario sketched in Fig. 1, we apply Alg. 2. The input is
a sub-matrix YBn

assembled from the #(Bn) devices for
source n. Table II outlines the higher decision results for the
proposed distributed VAD algorithms compared to M-NICA
and DMVAD. Figure 3 depicts the estimated VAD patterns
with high precision layered on the energy ground truth in the
distributed scenario for three different speech sources S3, S4,
and S5.

Distributed Use-Case

Variance Source Method CD (%) MD (%) FA (%) SDR

σ
2 ω

=
0
.0
1

S1

M-NICA [10] 60.8 6 33.2 -55.73

DMVAD [17] 86.3 3.5 10.1 7.7

S-VAD 79.6 10.4 10 7.4

SM-VAD 85.44 5.7 8.9 7.4

DSRM-VAD 85.04 2.33 12.63 7.4

S2

M-NICA [10] 46.85 3 50.15 -9.5

DMVAD [17] 96.3 0.8 2.9 6.73

S-VAD 93.1 3 3.9 6.7

SM-VAD 96 0.2 3.8 6.7

DSRM-VAD 95.1 0 4.9 6.7

S3

M-NICA [10] 56.96 3.90 39.14 -34.6

DMVAD [17] 97 0.9 2.1 7

S-VAD 89.4 10.5 0.1 6.6

SM-VAD 96.6 0.3 3.1 6.6

DSRM-VAD 96.2 0.3 3.5 6.6

S4

M-NICA [10] 55.85 6.41 37.74 -14.52

DMVAD [17] 93.6 6.4 0 8.6

S-VAD 77.6 22.4 0 8.2

SM-VAD 95.96 3.03 1.01 8.2

DSRM-VAD 96.4 2.4 1.2 8.2

S5

M-NICA [10] 45.75 5 49.25 -34.52

DMVAD [17] 96.2 3.8 0 2.3

S-VAD 94.5 4 1.5 2.3

SM-VAD 98.2 1.7 0.1 2.3

DSRM-VAD 98.9 0.8 0.3 2.3

S6

M-NICA [10] 46.55 2.8 50.65 -20.3

DMVAD [17] 94.8 2.2 2.9 5.9

S-VAD 91.4 8.6 0 5.3

SM-VAD 94.85 2.12 3.03 5.3

DSRM-VAD 95.7 0.6 3.7 5.3

TABLE II: Detection comparision of the original M-NICA algorithm
[10], the DMVAD approach [17], and the proposed methods: the S-
VAD, the SM-VAD and the DSRM-VAD (with a degree of freedom
robustness parameter ν = 49), for the speech use-case scenario
presented in Fig. 1, with AWGN of variance σ2

ω = 0.01.

VII. CONCLUSION

We suggest a new method for solving the multi-speaker
VAD problem for WASN in a distributed reverberant envi-
ronment. Our proposed method relies on a stability selection
assisted technique to promote a robust and sparse speaker-
specific feature extraction from a noisy observed signal mix-
ture. The extracted sparse components are sufficiently well-
separated for VAD, so the use of M-NICA is no longer
required. A robust Mahalanobis classifier is then designed to
reveal speaker-specific activity patterns.
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