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Abstract—Nonconvulsive status epilepticus (NCSE) is observed
when the patient undergoes a persistent electroencephalographic
epileptic episode without physical symptoms. This condition is
commonly found in critically ill patients from intensive care
units and constitutes a medical emergency. This paper proposes
a method to detect nonconvulsive epileptic seizures (NCES). To
perform the NCES detection the electroencephalogram (EEG)
is represented as a third order tensor with axes frequency ×
time × channels using Wavelet or Hilbert–Huang transform.
The signatures obtained from the tensor decomposition are used
to train five classifiers to separate between the normal and
seizure EEG. Classification is performed in two ways: (1) with
each signature of the different modes separately, (2) with all
signatures assembled. The algorithm is tested on a database
containing 139 nonconvulsive seizures. From all performed anal-
ysis, Hilbert–Huang Tensors Space and assembled signatures
demonstrate to be the best features to classify between seizure
and non-seizure EEG.

I. INTRODUCTION

Nonconvulsive status epilepticus (NCSE) is observed when
the patient undergoes a persistent electroencephalographic
epileptic episode without evident physical symptoms. The
NCSE can be classified in two major categories: with
coma/stupor and without coma/stupor (absence or focal epilep-
tic seizures). The appearance of nonconvulsive epileptic
seizures (NCES) in comatose or unresponsive patients’ EEG
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is often associated with serious brain damage and a very poor
prognosis [1]. The prompt recognition of patients at risk of
suffering from NCSE is necessary in order to manage them
accordingly and to provide the treatment when permanent
brain damage can be still prevented.

The methods proposed for NCESs detection published until
2015 are summarized in a review paper by Ansari and Sharma
[2]. This review pointed out that Support Vector Machines
(SVM), Neural Networks (NN) and Linear Discriminant func-
tions (LD) were the most widely used classifiers, while
Wavelet Transform (WT), Entropy and nonlinear parameters
were the most popular features to describe the NCES data.

This paper proposes a method to detect NCES based on
multiway data analysis. The electroencephalogram (EEG) data
is represented as a third order tensor in the way A ∈
R(F×T×S) with axes frequency×time×channels. Different
time × frequency transforms may be used to construct
such tensors. Although WT is a very popular tool in EEG
analysis, here we propose to use the Hilbert-Huang Transform
(HHT) as well, as it provides a more accurate definition of
particular-events in the time × frequency space than WT
and gives a better physical interpretation to the underlying
EEG activity [3]. Multiway analysis is a very powerful tool in
EEG analysis, as it can tackle spatial, temporal and spectral
properties of the EEG at the same time. It has been shown that
tensor decompositions of multiway EEG representations can
extract seizure sources and accurately characterize the seizure
pattern [4]. As such, this approach represents an elegant,
simple, yet effective alternative to the extraction of large and
heterogeneous feature sets. The signatures from the tensor
decomposition will be used as features for training the seizure
detector.
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Fig. 1. Histograms for the Frequency, Time and Space Modes. LMLRA analysis of all training datasets. Axis X and Y represents the number of components
and tensors respectively.

II. MATERIAL AND METHODS

A. Data Description

EEG data was collected as part of patients’ clinical as-
sessment at the Epilepsy Unit of the Cuban Neurological
Restoration Center (CIREN) and at the Intensive Care Units
(ICU) of Clinical Surgical Hospital Hermanos Ameijeiras,
both in Havana City. Data was anonimized to be used in this
study. In every case the electrodes were placed according to
the 10-20 montage system. Since patients come from different
hospitals, the acquisition protocol differs among the data. The
number of recording electrodes vary from 8 to 19, with a
sampling rate of 200 Hz. Our dataset includes 14 patients aged
between 18 and 57 years old, with a total of 139 seizures (55
with coma/stupor); all of which are diagnosed as NCES by
the neurophysiologist and neurologist. All procedures were
reviewed and approved by the Ethical Committees of the
CIREN and Hermanos Ameijeiras Hospital respectively.

B. Tensor formulation

To build the tensors, each EEG data channel was trans-
formed to time × frequency domain using WT or HHT.
The EEG signal was analysed in segments of 3s duration.
The transformation was applied to each EEG channel at every
segment, resulting in one frequency×time×channels tensor
per segment.

The WT decomposes a signal x(t) into frequency sub-
bands at different time scales. It convolves x(t) with a mother
wavelet function ψ(n) dilated and scaled in the way,

xw(a, b) =
1√
|a|

∫ ∞
−∞

x(t)ψ∗
(
t− b
a

)
dt (1)

Where ()∗ indicates the complex conjugate, ψ is the analysing
wavelet, a (> 0) is the scale parameter and b is the dilation
parameter [5]. For the transformation, the “Mexican Hat”
mother wavelet was used [6], [4]. Since the NCES activity
is below 5Hz, [7] five wavelet scales were computed, which
correspond to 1-5 Hz frequencies, with 1 Hz resolution. The
xw matrices extracted from each channel are stacked into a
tensor A ∈ R(F×T×S), further on W Tensors, where F is the
number wavelet scales, T is the number of time samples per
segment and S is the number of EEG channels.

The HHT was proposed by Huang et al [8]. This transforma-
tion is performed in two steps: 1) obtain the Empirical Mode
Decomposition (EMD) and 2) compute the Hilbert spectrum of
the results from the previous step. EMD decomposes a signal
in a set of intrinsic mode functions (IMF) and a residue. This
residue is conventionally defined as the trend of the series.

By definition, an IMF meets two conditions: (i) for the
entire data set, the number of extrema and the number of zero
crossings must be either equal or differ at most by one and (ii)
the mean at any point of the contour defined by interpolating
the local maxima (upper envelope) and the contour defined by
interpolating the local minima (low envelope) is zero [9]. The
EMD can be described with the following equation,

x(t) =
n∑
k=1

imfk(t) + r(t) (2)

where imfk is the kth IMF of the signal, and r is the residue
[8].

Once the IMFs are computed , they can be projected on a
frequency × energy × time space

xHH = w ◦ s ◦ t (3)

where ◦ means the matrix outer product, t is the time vector,
w is the instantaneous frequency and s is the energy defined
as

s(t) = a(t)2 (4)

a is instantaneous amplitude. Both wand s are n× t matrices
where n is number of IMF. This space is obtained by comput-
ing the Hilbert transform and w as,

yimfk(t) =
1

π
P

∫ ∞
−∞

imfk(t)

t− t0
dt (5)

and

wimfk(t) =
dθimfk(t)

dt
(6)

respectively. P indicates the Cauchy principal value and θimfk
is the instantaneous phase. yimfk(t) and imfk(t) form a com-
plex conjugate pair that describes an analytic signal zimfk(t),

zimfk(t) = imfk(t) + jyimfk(t) = aimfk(t)e
jθimfk

(t) (7)
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where aimfk and θimfk are defined as,

aimfk(t) =
√
[imfk(t)]2 + [yimfk(t)]

2 (8)

and
θimfk(t) = arctan

(
yimfk(t)

imfk(t)

)
(9)

respectively.
To obtain the instantaneous frequency × time matrices

xHH2D
(w, t) the amplitude elements were accumulated in the

frequency subscripts at every time instant in the way,

xHH2D
(w, t) =

n∑
k=1

sk(w, t) (10)

As for CWT the Hilbert spectrum was taken at 1-5 Hz. The
xHH2D

(w, t) matrices were arranged as an A ∈ R(F×T×S)

tensor, further on defined as HH Tensors, where F indicates
the 1-5 Hz frequency values, T the number of time samples
and S the number of EEG channels.

The two tensor sets obtained, W Tensors and HH Tensors,
were decomposed with the Canonical Polyadic Decomposi-
tion.

C. Tensor Decomposition

The Canonical Polyadic Decomposition (CPD) represents
an N th− order tensor X ∈ R(I1×I2×I3×···×IN ) as the outer
product of rank-1 tensors in the following way,

X =
R∑
r=1

b(1)r ◦ b(2)r ◦ . . . ◦ b(N)
r (11)

Where R is a positive integer and b
(1)
r ∈ RI1 , b

(2)
r ∈

RI2 , . . . , b
(N)
r ∈ RIN are nonzero vectors that express the N

mode signature.
The tensor rank of X is equal to the minimal number of

components R that generates an ‘exact’ CPD of X , where
‘exact’ means that there is equality at the Eq.11 [10]. However,
in this application we are not interested in an exact recon-
struction. In fact, we expect that additional unstructured noise
contaminates the EEG data. Instead, we are looking for a good
low rank approximation, which captures enough information
about the seizure pattern for correct classification.

To estimate the number of components required to perform
the decomposition, R values were estimated with the MatLab
toolbox Tensorlab [11]. First, using the rankest function of
Tensorlab, an upper bound of R = 4 and R = 9 was obtained
for HH tensors and W tensors, respectively. Afterwards, these
values were refined as follows: CPD and the low multi-
linear rank approximation (LMLRA) [12] were performed
with increasing R, starting from R = 1, until the desired
approximation was achieved. The desired approximation was
defined in terms of the relative error (relerr), which was
chosen here as 0.2. For CPD pseudorandom initialization and
a Nonlinear Least Squares algorithm was used.

This procedure was performed for all training examples in
the dataset. Therefore, for every segment, we obtained a rank

value in each of the 3 modes (i.e. frequency, time and channel).
Afterwards, rank histograms were constructed by counting the
number of training examples with a certain rank, as shown
in Fig. 1. Based on the histograms, we selected the most
frequently occurring rank as the number of CPD components
to extract. This was clearly R = 1 for HH Tensors. In case of
W Tensors the rank value was clearly 3 in frequency mode,
but more distributed in other modes. Finally, we chose R = 3,
as further increasing the rank gave only small relerr reductions
(until R = 7).

The signatures resulting from the tensor decomposition were
used as features to perform the classification.

D. Classification

Five classifiers were trained to perform the NCES detection:
a K-Nearest Neighbour classifier (KNN) with K=3, a Back-
propagation Neural Network (NNBP), a Naı̈ve Bayes Classi-
fier (BAYES), a linear Support Vector Machine (SVM) and a
Radial Basis SVM (SVMRB).

The classification was done for each patient individually.
The training set for each patient was assembled with all EEG
epochs of the first seizure (= positive class) and the same
number of non-seizure EEG epochs prior to the first seizure
(= negative class). The Classification was performed in two
ways: (1) with each signature of the different modes (channel,
time, frequency) separately, (2) with all signatures assembled.

The classifiers performance was evaluated in terms of sen-
sitivity, accuracy and false positive rate. The sensitivity can be
expressed as,

Sen =
TP

TP + FN
(12)

The accuracy is defined as,

Acc =
TP + TN

TP + FP + TN + FN
(13)

The false positive rate denotes the Type I error ratio (false
epochs classified as positives) is defined as

FPR =
FP

FP + TN
(14)

Where TP is the number of seizure epochs correctly detected,
FP is the number of false alarms, TN is the number of seizure
free epochs correctly detected and FN is the number of missed
seizure epochs.

III. RESULTS AND DISCUSSION

The results obtained from the individual signatures’ classi-
fication are shown in Fig. 2. The NCES detection sensitivity
using HH Tensors signatures was higher compared to the one
obtained with W Tensors signatures. This can be explained
by the fact that HH Tensors are closer to rank one, capturing
the seizure with R=1. Then, all features obtained for these
tensors are relevant for the seizure classification. However, for
W Tensors with R=3, not all terms represent seizure activity;
therefore, some of the signatures are not relevant for the clas-
sification. Different mother wavelets and different frequency
ranges (e.g. 1-30Hz [6], [4]) were also tested for W Tensors
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Fig. 2. Classification sensitivity results for individual and assembled signatures. H CP and W CP are the signatures obtained from HH Tensors and W Tensors
CPD respectively.

Fig. 3. Subject 10 first seizure and a negative epoch misclassified as positive due to a paroxysmal burst.

representation, but without significant improvement of the
results.

We further discuss the performance of HH Tensors rep-
resentation. Comparing the classification performance of the
individual signatures in the three different modes, we see that
Space signatures achieved the best results, closely followed
by Time signatures. The sensitivity of the KNN and SVM
classifiers using these signatures were over 90% with 0.1
and 7 ∗ 10−2 false detections per hour, respectively, both
outperforming Frequency signatures.

This is not entirely surprising, as in an initial analysis com-
paring the probability distribution of the obtained signature
values for both W Tensors and HH Tensors, we observed that
the values obtained by HH Tensors Space and Time signatures
separate better between seizure and non-seizure epochs. This
behaviour is related to the resemblance between the EEG

patterns from the subjects’ first seizure and some segments
marked as seizure-free. This is caused by the presence of a
large number of spikes or long paroxysms that resemble a
seizure. Fig. 3 shows an example of this phenomenon.These
paroxystic segments, according to medical convention, are
too brief to be classified as seizures. Yet, the possibility of
predicting seizures with these detections can be interesting,
since this activity can be a seizure precursor [13]. Another
reason for the FP detections is due to electrode artefacts
on seizure-free epochs. Interestingly, both paroxysms and
artifacts affect Frequency signatures more than Space and
Time signatures.

As HH Tensors Space signatures achieved the best sen-
sitivity, we further analyse its performance in combination
with different classifiers. The highest average sensitivity was
achieved by KNN, SVMRB and BAYES classifiers (see
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Fig.2). The accuracy values for these classifiers range between
98.6 − 99.0%. In terms of false positive rate, KNN obtained
0.1 false detections per hour. Since, as explained above, the
probability distribution of the Space signatures for seizure and
seizure-free epochs were clearly separated, and given that the
KNN classifier bases its decisions on distance measures in a
small neighborhood of similar objects, this performance is ex-
pected. The minimum number of false detections per hour was
achieved by SVMRB and BAYES with 7∗10−2. However, the
BAYES classifier obtained a very low sensitivity of 44.3% for
the Time signatures. Naı̈ve Bayes classifier assumes statistical
independence of the data. A post-hoc analysis revealed that
mutual information estimates for the Time signatures often
take values over 0.7. This suggests that Time signatures are
not statistically independent, and could explain why BAYES
classifier does not perform properly for them.

Although sensitivity and accuracy values achieved by NNBP
for the Space signatures are over the 90%, it has a high false
positive rate and it shows relatively low performance for the
other signatures. The used training datasets are small and
neural networks needs large training datasets to improve the
classification results.

Finally, SVMRB outperformed SVM. In fact, this is the case
for all signatures, except for Time signatures. This suggests
that the difference between seizure and non-seizure epochs
is best described in terms of a non-linear function of the
signatures.

The assembled signatures performed similarly to the
HH Tensors space signatures in terms of sensitivity and ac-
curacy. The best classifiers for this approach are KNN and
SMVRB, both with a sensitivity and accuracy values of 98.7
and 98.9%, respectively. The number of false detections per
hour obtained using the assembled signatures ( for KNN
9 ∗ 10− 2 and for SVMRB 7 ∗ 10−2) are similar to the ones
achieved by the HH Tensors Space signatures. The missed
positive epochs for the assembled training correspond mainly
to the beginnings and endings of seizures, where the seizure
activity is less clear (mainly in subjects 2 and 12).

IV. CONCLUSION

This study proposes a method for NCES detection that
applies for the first time HHT and multiway data analysis for
this kind of seizures.

From the two analysed tensor sets, the results obtained for
the one built with HHT are superior to the one obtained with
WT. The frequency× energy× time distribution offered by
HHT captures the NCES data in a tensor close to R=1. This
turns all signatures obtained from HH Tensors decomposition
in relevant features to perform the NCES detection, with high
performance.

From all performed analyses, HH Tensors Space signatures
demonstrate to be the best feature to classify between seizure
and non-seizure epochs. These signatures obtained sensitivity
and accuracy values over 95% for the best classifiers evaluated,
KNN and SVMRB.

We conclude that multiway analysis of EEG data by means
of HHT and low rank tensor decompositions, in combination
with an appropriate choice of classifier is an effective way to
detect non-convulsive epileptic seizures.
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