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Gridless Compressed Sensing for Fully
Augmentable Arrays

Wassim Suleiman, Christian Steffens, Alexander Sorg and Marius Pesavento

Abstract—Direction-of-arrival (DOA) estimation using nonuni-
form linear arrays is considered. We focus on the so called “fully
augmentable arrays” (FAAs) with full set of covariance lags. In
FAAs, the number of covariance lags is usually larger than the
number of sensors in the array. Thus, with FAAs more sources
than the number of sensors can be identified. Existing DOA
estimation algorithms for FAAs are based on the assumption
of uncorrelated sources. In this paper, based on compressed
sensing, we present a DOA estimation algorithm for FAAs
without assuming uncorrelated sources. The proposed algorithm
is based on the newly introduced gridless SPARse ROW-norm
reconstruction (SPARROW) formulation for the joint sparse
reconstruction from multiple measurement vectors. By numerical
experiments, we show that the proposed algorithm outperforms
the existing algorithms in the presence of correlated signals
or small number of snapshots. Moreover, using simulations,
the behavior of the Cramér-Rao Bound (CRB) for the case of
correlated source is demonstrated and it is shown that, when the
number of sources is larger than the number of sensors, the CRB
for FAAs approaches zero at infinitely large signal-to-noise-ratio
(SNR) only if the sources are fully correlated.

Index Terms—Fully augmentable arrays, Joint Sparsity, Grid-
less Parameter Estimation, Direction-of-arrival estimation.

I. INTRODUCTION

DOA estimation of narrowband sources has attracted sig-
nificant attention [1], since it has many applications including
sonar, radar, and seismic exploration. Subspace-based methods
such as MUSIC [6], Root-MUSIC [2], ESPRIT [3], and RARE
[4], and the methods in [5], [7] are computationally efficient
direction finding methods that exhibit the super resolution
property. The DOA estimation algorithms in [2]–[5] can only
identify a number of sources which is smaller than the number
of sensors in the array.

When the number of sensors is limited, nonuniform linear
arrays become attractive [8], [9]. Nonuniform linear arrays
have larger aperture compared to uniform linear arrays (ULAs)
with the same number of sensors, which results in a higher
DOA resolution. Moreover, a nonuniform linear array is de-
signed such that it contains much more covariance lags than
the number of sensors in the array, which increases the number
of identifiable sources by such arrays. The set of covariance
lags of a FAA has no missing lags, i.e., it has a full co-
array. Whereas a partially augementable array (PAA) has some
number of missing lags.

DOA estimation using nonuniform linear arrays in the
conventional case, i.e., when the number of sources is less
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than the number of sensors can be achieved using the conven-
tional DOA estimation algorithms, e.g., Root-MUSIC [2] and
ESPRIT [3]. In the superior case, where the number of sources
is larger than the number of sensors in the array, conventional
DOA estimation algorithms fail to identify the sources. In
[10], DOA estimation in the superior case has been achieved
by constructing the augmented covariance matrix (ACM) and
using it for the MUSIC algorithm instead of the direct data
covariance matrix. In [9] and [11], DOA estimation algorithms
for FAAs and PAAs are presented, respectively. The algorithms
in [9] and [11] are based on the maximum entropy, the ACM,
and the Maximum Likelihood estimator. The algorithms in
[9]–[11] assume uncorrelated sources and their performance
has not been evaluated in the presence of correlated sources.

Recently, compressed sensing (CS) based DOA estima-
tion techniques [12]–[15] have gained more popularity over
subspace-based methods, since CS exhibits good estimation
performance even in difficult scenarios and more robust for to
correlated sources [15], [16].

In this paper, DOA estimation using FAAs is considered.
Based on the newly introduced SPARROW formulation for the
joint sparse reconstruction from multiple measurement vectors,
a DOA estimation algorithm for FAAs is presented. Similar
to the SPARROW formulation, our proposed algorithm does
not require the sources to be uncorrelated. By simulations, we
show that our proposed algorithm outperforms the algorithms
in [9], [10] for correlated sources. The CRB is used to assess
the performance of the DOA estimation algorithm. For the
superior case, we show by simulations that the CRB ap-
proaches zero with increasing SNR when the sources are fully
correlated, which is in contrast to the uncorrelated sources
case, where the CRB does not approach zero for an infinitely
large SNR.

This paper is organized as follows. The signal model
and conventional DOA estimation algorithms for FAAs are
reviewed in Section II and Section III, respectively. In Sec-
tion IV, the SPARROW approach is introduced and in Sec-
tion V the gridless SPARROW approach is extended to FAAs.
The behaviour of the CRB and the performance of the DOA
estimation algorithms is demonstrated by simulations in Sec-
tion VI.

In this paper, the transpose, complex conjugate, and the
Hermitian operators are denoted as (·)T , (·)∗ , and (·)H ,
respectively. The imaginary unit, diagonal matrix formed from
scalar arguments, trace of a matrix, and the expectation oper-
ator are denoted as, , diag(·), Tr(·), and E(·), respectively.
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Fig. 1. Nonuniform linear array of M = 4 sensors.

II. SIGNAL MODEL

We consider a nonuniform linear array consisting of M
sensors. The set of M(M − 1)/2 inter-sensor separations
has no missing lags, i.e., the array is fully augmentable. Let
d1 < · · · < dM denote the position of the sensors in the array
with respect to the first (reference) sensor, thus, d1 = 0, and
let

D = {d1, . . . , dM} (1)

be the set of sensor positions. The positions d1, . . . , dM are
measured with half-wavelength of the incident signal carrier.
The set of inter-sensor distances is L = {dj − di|i, j =
1, . . . ,M, j > i}. The smallest inter-sensor distance cor-
responds to half-wavelength of the incident signal carrier
to avoid ambiguities [9]. Let M̆ denotes the largest inter-
sensor distance, i.e., the array aperture. Then M̆ is an integer
multiple of the half-wavelength of the signal carrier. The
considered nonuniform array possesses the same set of inter-
sensor distances as the ULA which consists of (M̆ + 1)
sensors separated by half-wavelength. This ULA is referred
to as the co-array. The set of sensor positions of the co-array
is D̆ = {0, 1, . . . , M̆}. In Fig. 1 a FAA of M = 4 senors
with positions D = {0, 1, 4, 6} is displayed. The co-array
corresponding to this FAA consists of M̆+1 = 7 sensors with
positions D̆ = {0, . . . , 6}. In the following, the smallest inter-
sensor distance is set to half-wavelength and the remaining
inter-sensor distances are taken to be an integer multiple of
this smallest distance so that the positions contained in the
sets D and D̆ are integer numbers as in the previous example.

Signals of L far-field narrow-band sources impinge onto the
array from directions θθθ = [θ1, . . . , θL]T relative to the array
axis as demonstrated in Fig. 1. The array output at time instant
t is modeled as

yyy(t) = AAA(θθθ)ψψψ(t) +www(t), (2)

where ψψψ(t) ∈ CL×1 denotes the signals of the L Gaussian
sources and www(t) ∈ CM×1 is the vector representing the
additive white Gaussian noise with covariance σ2. The M×L
steering matrix AAA(θθθ) = [aaa(θ1), . . . , aaa(θL)] consists of L
steering vectors defined as

aaa(θl) = [exp(πdl cos(θl)), . . . , exp(πdM cos(θl))]
T , (3)

for l = 1, . . . , L, where the sensor positions are defined in
(1). Since a FAA is considered, the corresponding co-array
steering vector ăaa(θl) is written as

ăaa(θl) = [1, exp(π cos(θl)), . . . , exp(πM̆ cos(θl))]
T . (4)

Note that ăaa(θl) is a Vandermonde vector. The array output
for N time instants is stored in the measurement matrix YYY =
[yyy(1), . . . , yyy(N)] which can be written as

YYY = AAA(θθθ)ΨΨΨ +WWW, (5)

where ΨΨΨ = [ψψψ(1), . . . ,ψψψ(N)] and WWW = [www(1), . . . ,www(N)].
The true measurement covariance matrix RRR is defined as

RRR = E
(
yyy(t)yyyH(t)

)
= AAA(θθθ)PPPAAAH(θθθ) + σ2IIIM (6)

where IIIM is the M ×M identity matrix and

PPP = E
(
ψψψ(t)ψψψH(t)

)
(7)

is the L × L source covariance matrix. Note that the matrix
PPP is diagonal only in the case of perfectly uncorrelated
sources since the off-diagonal entries of PPP correspond to the
correlations between the sources. In practice, the measurement
covariance matrix RRR in (6) is not available but it can be
estimated from N samples of the array output as

R̂RR = YYY YYY H/N. (8)

Let AAA(θ̃θθ) ∈ CM×K denotes the overcomplete dictionary
matrix obtained by sampling the field-of-view in K � L
spatial directions θ̃θθ = [θ̃1, . . . , θ̃K ]T . For simplicity, the grid
θ̃θθ is assumed to be very fine such that the true DOAs lie on
the grid. The signal model in (5) can be written as a sparse
representation AAA(θ̃θθ)Ψ̃ΨΨ = AAA(θθθ)ΨΨΨ, where

Ψ̃ΨΨ = [ψ̃ψψ1, . . . , ψ̃ψψK ]T ∈ CK×N (9)

is a sparse representation of the signal waveform matrix
ΨΨΨ, which has non-zero row ψ̃ψψk only if the corresponding
sampled direction θ̃k corresponds to a true source direction.
Using this sparse representation, the DOA estimation problem
can be formulated as the well-known convex mixed-norm
minimization problem [13], [15]

min
Ψ̃ΨΨ

1

2

∥∥∥AAA(θ̃θθ)Ψ̃ΨΨ− YYY
∥∥∥2

F
+ λ
√
N
∥∥∥Ψ̃ΨΨ∥∥∥

2,1
, (10)

where λ > 0 is the regularization parameter. For increasing λ
more emphasis is put on the sparsity of the signal matrix Ψ̃ΨΨ,
i.e., the minimizer of (10) will contain less non-zero rows. In
(10), ‖·‖F denotes the Frobenius matrix norm and ‖·‖2,1 is the
`2,1 mixed norm, i.e.,∥∥∥Ψ̃ΨΨ∥∥∥

2,1
=

K∑
k=1

∥∥∥ψ̃ψψk

∥∥∥
2
. (11)

Note that using (10), the DOA estimation problem is reduced
to the identification of the non-zero rows in the estimated row-
sparse matrix ˆ̃

ΨΨΨ. The DOA estimates are the grid points, i.e.,
the elements of θ̃θθ, which correspond to the L rows of ˆ̃

ΨΨΨ with
the largest norm.

III. DIRECT AUGMENTATION AND SUBSPACE
TRUNCATION APPROACHS

Traditionally DOA estimation algorithms for nonuiform
linear arrays distinguish between two DOA estimation cases:

1) The conventional case: where L < M , thus conventional
subspace-based DOA estimation algorithms, e.g., MU-
SIC [6] can be directly applied to the array.

2) The superior case: where M ≤ L ≤ M̆ . In this case
conventional DOA estimation methods fail in identifying
the sources. Therefore new DOA estimation methods,
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Fig. 2. The co-array covariance matrix corresponding to the FAA with sensor
positions D = {0, 1, 4, 6}, where the colored entries are obtained directly
from the covariance matrix of the FAA.

e.g., direct augmentation [10] and subspace truncation
[9] approaches, are proposed to achieve DOA estimation
in such a case.

The focus of this paper is the superior case, however, the
proposed algorithm is also applicable in the conventional case.
In the following, direct augmentation and subspace truncation
are reviewed. Since these approaches assume perfectly uncor-
related sources, i.e., a diagonal matrix PPP , in this section the
sources are assumed to be perfectly uncorrelated.

In [10], DOA estimation in the superior case is achieved
by constructing the (M̆ + 1) × (M̆ + 1) co-array covariance
matrix, denoted as R̆RR, from the M×M array covariance matrix
and then applying the MUSIC algorithm to the resulting co-
array matrix R̆RR. Note that since the sources are assumed to
be uncorrelated, the co-array covariance matrix R̆RR is Toeplitz,
i.e., the entries on the main- and sub- diagonals of R̆RR are equal
and correspond to the entries of RRR with the same covariance
lag. If more than one entry of RRR corresponds to the same
covariance lag, these entries are averaged and the average is
used in the co-array covariance matrix R̆RR. This approach is
referred to as the direct augmentation approach (DAA) [10].
Fig. 2 demonstrates the 7 × 7 co-array covariance matrix
corresponding to the FAA of Fig. 1. In Fig. 2, the entries
with white color (not colored) are the entries which cannot be
estimated directly from the array output (missing sensors). The
entries which are on the same main- or sub- diagonals have the
same colors (ideally these entries should be identical). Note
that at each diagonal at least one entry is available, since the
array is fully augmentable.

In [9], the DAA is used to compute an initial estimate of the
co-array covariance matrix. Then subspace truncation (SST) is
applied to the resulting co-array covariance matrix to equalize
its noise eigenvalues, while maintaining the Toeplitz structure
of the matrix. The resulting estimate of the co-array covariance
matrix is used to initialize the Maximum Likelihood estimator,
for details refer to [9].

We remark that in the case of correlated source the co-array
covariance matrix does not exhibit the Toeplitz property and
the aforementioned DOA approaches are not valid.

IV. THE SPARROW FORMULATION

In [15, Theorem 1] it is proved that the `2,1 mixed-norm
minimization problem (10) can equivalently be formulated as
the SPARse ROW-norm reconstruction (SPARROW) problem

min
SSS∈D+

Tr
(
AAA(θ̃θθ)SSSAAAH(θ̃θθ) + λIIIM )−1R̂RR

)
+ Tr(SSS), (12)

where the sample covariance matrix R̂RR is defined in (8), λ is
the regularization parameter in (10), and Tr(·) is the trace of
a matrix. The optimization variable in (12) SSS is restricted to
the set of diagonal matrices with non-negative entries D+. It
can be shown that the solution of the minimization problem
(12)

ŜSS = diag
(
ŝ1, . . . , ŝK

)
(13)

contains on its main diagonal the scaled row-norms of the
estimated row sparse signal matrix ˆ̃

ΨΨΨ = [
ˆ̃
ψψψ1, . . . ,

ˆ̃
ψψψK ]T , which

is the minimizer of (10) and an estimate of Ψ̃ΨΨ in (9). In [15],
it is proven that the solutions of (10) and (12) can be uniquely
obtained from each other. The DOAs can be computed from
a minimizer of the SPAROW formulation ŜSS by finding the L
largest peaks of the diagonal entries of ŜSS. The points of the
grid θ̃θθ which correspond to these peaks are the estimates of
the L DOAs.

The SPAROW formulation is attractive since:

1) The SPARROW optimization variables are the elements
on the diagonal of the matrix SSS, which is of size K,
whereas the optimization variables in the `2,1 formu-
lation in (10) are the elements of Ψ̃ΨΨ, which is of size
K ×N .

2) The SPARROW formulation allows gridless DOA es-
timation when the overcomplete dictionary AAA(θ̃θθ) is a
Vandermonde matrix [15].

3) The structure of the optimization variable of the SPAR-
ROW formulation SSS ∈ D+ does not depend on the
source correlation, particularly, even if the sources are
correlated, SSS will still be a diagonal matrix with non-
negative entries. This is in contrast to the CS algorithms
which are derived from the covariance matrix in (6)
and their optimization variable is the source covariance
matrix, e.g., refer to [17].

We remark that the covariance based DOA estimation
approach in [16] has similarities to the SPARROW formulation
and can be used for DOA estimation in nonuniform linear
arrays. However, the approach in [16] was derived under
the assumption of uncorrelated sources in contrast to the
SPARROW formulation where the assumption of uncorrelated
sources has not been used. In the following, we rewrite the
DOA estimation problem for FAAs using the SPARROW
formulation1.

V. GRIDLESS SPARROW FOR FAA

In the case that the array manifold exhibits a Vandermonde
structure, the SPARROW approach in (12) can be written
as a gridless minimization [15]. For FAAs, the co-array
steering matrix ĂAA(θ) = [ăaa(θ1), . . . , ăaa(θK)] ∈ C(M̆+1)×L,
where the vector ăaa is defined in (4), is a Vandermonde
matrix. We use this property of the FAAs to reformulate
the SPARROW algorithm as a gridless estimation problem.
Let ĂAA(θ̃θθ) = [ăaa(θ̃1), . . . , ăaa(θ̃K)] ∈ C(M̆+1)×K denote the

1The approach in [16] can also be extended to FAAs in the same way as
the SPARROW approach which is explained in Section V.
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Vandermonde overcomplete dictionary corresponding to the
co-array. Thus the matrix

T̆TT = ĂAA(θ̃θθ)SSSĂAA
H
(θ̃θθ) (14)

is a (M̆ + 1) × (M̆ + 1) Toeplitz matrix and can be used to
formulate the gridless SPARROW approach similar to [15].
We introduce the M × (M̆ + 1) selection matrix JJJ , which
is used to retrieve the matrix TTT = AAA(θ̃θθ)SSSAAAH(θ̃θθ) from the
Toeplitz matrix T̆TT as follows:

JJJ = [eeed1+1, . . . , eeedM+1]T , (15)

where d1, . . . , dM are the positions of the sensors of the FAA
defined in (1). The vector eeei, for i = 1, . . . , M̆ + 1, denotes
the ith column of the (M̆ + 1)× (M̆ + 1) identity matrix. For
example, the selection matrix corresponding to the FAA of
Fig. 1 is JJJ = [eeed1+1, eeed2+1, eeed3+1, eeed4+1]T = [eee1, eee2, eee5, eee7]T

where eee1 = [1, 0, 0, 0, 0, 0, 0]T , eee2 = [0, 1, 0, 0, 0, 0, 0]T , and
the remaining two vectors are defined similarly. The matrix JJJ
selects the rows of the co-array overcomplete dictionary ĂAA(θ̃θθ)
which correspond to the FAA, i.e.,

AAA(θ̃θθ) = JJJĂAA(θ̃θθ). (16)

Thus, the matrix TTT can be written as

TTT = AAA(θ̃θθ)SSSAAAH(θ̃θθ) = JJJĂAA(θ̃θθ)SSSĂAA
H
(θ̃θθ)JJJT = JJJT̆TTJJJT , (17)

where (14) is used for the last equality. Substituting (17) in
the SPARROW formulation (12) yields

min
T̆TT∈T, T̆TT�000

Tr
(
(JJJT̆TTJJJH + λIIIM )−1R̂RR

)
+

1

M̆ + 1
Tr(T̆TT ) (18)

where T is the set of Toeplitz matrices and T̆TT � 000 means that
the matrix T̆TT must be positive semidefinite. The second term
in (18) is computed as follows:

Tr(SSS) =
1

M̆ + 1
Tr
(
ĂAA(θ̃θθ)SSSĂAA

H
(θ̃θθ)
)

=
1

M̆ + 1
Tr(T̆TT ). (19)

Note that the optimization variable in (18) is the matrix T̆TT ,
which has only (M̆ + 1) unknown entries due to the fact that
it exhibits the Topelitz structure.

Let ˆ̆
TTT denotes a minimizer of (18). Then (14) implies that

that the matrix ˆ̆
TTT spans the same principal subspace as the

matrix ĂAA(θθθ). Consequently, the Toeplitz matrix T̆TT can be used
for DOA estimation based on polynomial rooting, e.g., as in
the Root-MUSIC algorithm [2], instead of the matrix resulting
from the DAA as in [10] and [9]. The benefit of using T̆TT
from (18) rather than the DAA is that T̆TT is Toeplitz even if
the sources are correlated whereas the DAA uses the co-array
covariance matrix which does not exhibit the Toeplitz structure
when correlated sources are present.

Similar to [15], problem (18) is written as

min
T̆TT∈T, T̆TT�000,UUUM�000

Tr(UUUMR̂RR) + Tr(T̆TT )/(M̆ + 1)

s.t.

[
UUUM IIIM
IIIM JJJT̆TTJJJH + λIIIM

]
� 0,

(20)

where UUUM is an M ×M positive semidefinite matrix which
is also an optimization variable of (20), refer to [15]. The
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Fig. 4. Probability of detection versus SNR for ρ = 0.8 in the superior case.

problem (20) is a positive semidefinite program and can be
solved using standard convex optimization tools, e.g., [18].

To summarize, our proposed algorithm consists of two steps.
In the first step, the problem in (20) is solved, with ˆ̆

TTT denoting
a solution. Then in the second step, a polynomial rooting based
estimation technique for ULAs, such as the Root-MUSIC
algorithm, is applied to ˆ̆

TTT .

VI. SIMULATIONS

In the simulations, a FAA with sensors at positions
D = {0, 1, 4, 6}, as in Fig. 1, is considered. Signals of 4
equal-powered sources impinge onto the FAA from DOAs
45◦, 65◦, 98◦, and 120◦. A number of N = 20 samples of
the array output are available. The regularization parameter
is chosen as in [19] to be λ =

√
σ2
nM logM . We compare

our results averaged over 500 realizations to the CRB in [20,
Equation (2.10)].
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Fig. 5. RMSE versus the source signal correlation ρ in the superior case.

A. DOA Estimation Performance

Fig. 3 shows the root mean square error (RMSE) of DOA
estimation against the SNR for our proposed SPARROW
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Fig. 6. The CRB for FAA in the superior case for different values of ρ.

based approach, the DAA [10], and the approach in [9]. The
correlation factor ρ between all sources is set to 0.8. Observe
that while all algorithms do not achieve the CRB, our proposed
SPARROW based approach retains the best performance. In
Fig. 4, the source resolution probability, as defined in [5], is
plotted against the SNR for the same configuration as in Fig. 3.
Note that the conventional approaches in [9] and [10] are
not always able to identify the sources whereas our proposed
approach achieves a resolution probability of 1 at high SNR. In
Fig. 5, the RMSE of DOA estimation using the aforementioned
algorithms is plotted against the correlation factor ρ. Note
that the CRB decreases with increasing ρ. The performance
of the proposed approach improves slightly with increasing ρ,
however, it does not achieve the CRB. The performances of the
conventional methods in [10] and [9] degrade with increasing
ρ since these algorithms assume uncorrelated sources.

B. The CRB Behaviour at High SNR

In Fig. 6, the CRB is displayed for different values of the
source correlation factor ρ. Observe in Fig. 6 that the CRB
does not approach zero for high SNR but it converges at
some finite value. Such a behaviour of the CRB has been
recognized in [9] for FAAs, in [21] for non-coherent arrays,
and in [22] for DOA estimation using fewer receivers than
the number of sources. In [22], the authors argue that this
behaviour “is typical in scenarios where a signal subspace
is nonexistent”. Note that for increasing values of ρ the
CRB decreases, i.e., DOA estimation performance improves
with sources correlation. Moreover, if the sources are fully
correlated, i.e., ρ = 1, then the CRB approaches zero at
infinitely large SNR since the dimension of the signal subspace
is reduced in such case.

CONCLUSION

We have presented a gridless DOA estimation algorithm
for FAAs which, in contrast to the conventional algorithms,
does not require the assumption of uncorrelated sources. The
proposed algorithm is based on the SPARROW formulation
for the joint sparse reconstruction from multiple measurement
vectors. The performance of our proposed algorithm is shown
to be superior to the conventional algorithms when correlated
sources are present or a small number of snapshots is available.
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