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Abstract—This paper addresses the problem of decision mak-
ing when there is no or very vague knowledge about the
probability models associated with the hypotheses. Such scenarios
occur for example in Internet of Things (IoT), environmental
surveillance and data analytics. The probability models are
learned from the data by empirical distributions that provide an
accurate approximation of the true model. Hence, the approach
is fully nonparametric. The bootstrap method is employed to
approximate the distribution of the decision statistic. The actual
test is based on the Anderson-Darling test that is shown to
perform reliably even if the empirical distributions differ only
slightly. The proposed detector allows controlling Type I and
II error levels without specifying explicit probability models or
performing tedious large sample analysis. It is also proved that
the test can achieve the specified power. Numerical simulations
validate the results.

I. INTRODUCTION

In a variety of signal processing applications and tasks,
one needs to make decisions at a desired error level. Prime
examples include radar, wireless communication, IoT, envi-
ronmental surveillance, biomedical applications as well as
data analytics. Decision making is commonly formulated as
a binary hypothesis testing problem, and a decision about the
presence or absence of a signal is made based on an observed
data set, usually recorded by a sensor. A test statistic is com-
puted and compared to a threshold value to choose between
two hypotheses. To achieve the desired performance and find
appropriate thresholds, explicit assumptions on the underlying
probability models are made. Unfortunately, these assumptions
on probability models may not be valid in practice, the models
may be very complicated or it may not be feasible to specify an
explicit model. Furthermore, large sample analysis establishing
asymptotic Gaussianity is often needed to obtain quantitative
information about the performance of the designed inference
method. One may avoid many of these problems by resorting
to approximate models or nonparametric techniques instead.
Empirical distributions obtained via bootstrapping can be used
as a basis for reliable statistical inference. This approach
allows for controlling the Type I and Type II error levels
in decision making as well as for producing information
about confidence intervals, bias and variances. The inference
can be completely nonparametric since the required empirical
distributions can be learned from the data. This is particularly
important in applications where the observations may be made
in very different operational environments and data in different
sensors might obey different probability models.

In [1], a variety of examples of bootstrap applications in
signal processing is given, including a hypothesis test for
a parameter being smaller or larger than a given threshold.
A parametric detection scheme using the bootstrap to obtain
a test statistic’s distribution is introduced in [2]. A method
of combining sequential analysis and bootstrapping for para-
metric signal detection in cognitive radio is provided in [3].
An overview of nonparametric bootstrap distance tests from a
statistics point of view can be found in [4].

In this paper, a fully nonparametric hypothesis testing
method is proposed. The method approximates the underly-
ing probability models using bootstrapping. It assumes the
availability of some training data when there is only noise
and interference present. Consequently, the distribution of
the test statistic under hypothesis H0 can be approximated
using the empirical distribution obtained by bootstrapping. The
detection task at hand is to decide whether the observed data
comes from the same or a different distribution. The proposed
test compares the empirical cumulative distribution functions
(EDFs). The actual test is based on the Anderson-Darling
[5] test that performs highly reliably even if the maximum
difference between the distributions is not large but they differ
slightly in many places, including the tails. The proposed
method allows for achieving the desired detection performance
without specifying explicit probability models or performing
tedious large sample analysis. Simulations demonstrate its ca-
pability to distinguish between different distributions and that
it achieves the specified power. In addition, we demonstrate
that only a rather small amount of observed data is required
to come to reliable decisions. Potential applications include
hypothesis testing in an IoT and environmental sensing, where
establishing explicit probability models for massive numbers
of sensors is not feasible, but at the same time one needs
decision making algorithms that fulfill the desired performance
criteria in terms of Type I and Type II error probabilities.

This paper is organized as follows. In Section II, the
system model for hypothesis testing is provided. A brief
description of the employed bootstrapping method is given
as well. In Section III, the proposed bootstrapped detection
algorithm and Anderson-Darling test are described in detail.
The test statistic is derived and the asymptotic validity of
the proposed test is proved. Finally, in Section IV, simulation
results demonstrating the capability to distinguish between a
variety of distributions and achieving the desired error levels
in detection are provided.

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 1495



II. SYSTEM MODEL

In this section, we describe the system model and give a
brief overview on the bootstrap method and how it is used to
approximate distributions for hypothesis testing. The detection
task is formulated as a binary hypothesis testing problem with
the following two hypotheses:
• H0: The data comes from the nominal distribution.
• H1: The data comes from some other distribution

In this paper the nominal distribution, instead of being known,
is approximated using bootstrapping to learn from the data and
form empirical distributions. The classical detection tasks with
only noise under H0 and a present signal under H1 are special
cases of this model, in particular if assuming a random signal.

A binary detector declares which of the two hypotheses
is in place. Commonly this is done by comparing a test
statistic τ to a threshold value. The proposed algorithm uses
a nonparametric test statistic τ from two samples X and Y .
The value of τ is compared to its distribution under H0. If
the value is significant, i.e., sufficiently far at the tail of the
empirical distribution under H0, we accept H1, otherwise we
accept H0. In this paper, the distribution of τ under H0 is not
obtained by making explicit assumptions about the distribution
but by applying the bootstrap to training data. The training
data should obey the nominal distribution such that there is
only ambient noise and interference present. The EDF of τ is
then approximated using the bootstrap without making any
assumptions on underlying probability models. Hence, our
approach is completely non-parametric.

Our binary hypothesis test is based on two data sets (sam-
ples) X and Y . X is called ambient sample and Y observation
sample. Data set X is reference or training data acquired when
there is no signal present. The observation sample Y contains
data recorded when the detector is in operational use with the
goal to detect the presence or absence of a signal.

The empirical distribution under H0 is learned as follows. In
the training phase, the sensor is exposed to ambient noise in
its location when there is no signal present. During this period,
the sensor records a training data set I, following a distribution
F . The training phase is carried out only once, if the ambient
noise is stationary. Changes in the noise statistics may require
retraining and new approximation of empirical and test statistic
distributions. When the sensor is in actual operational use
performing a detection task, we randomly sample X from I.

When recording the observation sample Y , we want to
determine if the data comes from a different distribution. In
the absence of a signal, the underlying distribution G of X is
similar to F , since again only noise is being recorded. Our
hypothesis testing problem can hence be reformulated as
• H0: Both, X and Y , follow the same distribution F = G.
• H1: X and Y follow different distributions F 6= G.
Any hypothesis testing procedure is subject to errors de-

scribed in terms of probability of false alarm α = p f a,
and probability of missed detection pmd . The probability of
detection, i.e. the power of the test, is thus pd = 1− pmd . In
our approach, the decision is based on a nonparametric test

statistic τ . Its value is computed exclusively from the data in
X and Y , without any explicit assumptions on the underlying
distributions. To finally come to a decision, we evaluate

|τ|< q1−α , (1)

where q1−α denotes the (1−α)-quantile obtained from the
theoretical distribution of τ under H0, using the probability of
false alarm α . If (1) holds, H0 is accepted, otherwise, H1 is
chosen. This provides a probability of 1−α of detecting H0
when it is true. Since the theoretical distribution of the test
statistic τ is not known and and no distributional assumptions
are made, we approximate it using nonparametric bootstrap-
ping and empirical distributions. Furthermore, the theoretical
quantile value in (1) cannot be used. Instead, its empirical
counterpart q∗1−α

, obtained from the empirical distribution is
employed. The bootstrap allows for finding such percentile
points with high accuracy. It is important to ensure that one
is still able to achieve the desired performance levels in
terms of pmd and α = p f a. The proof that the specified error
probabilities still hold is given in Section III-C.

Even though the proposed detector uses empirical quantities,
it is an asymptotically valid algorithm satisfying specified
error probabilities for large sample sizes. For smaller samples
however, it may be subject to empirical inaccuracies. It is
desirable to design algorithms that perform reliably in the face
of inaccuracies even for small sample sizes. Two guidelines in
[6] allow for reducing these inaccuracies when implementing
a bootstrapped hypothesis test. First the importance of resam-
pling assuming H0 to achieve a small pmd is emphasized. The
second guideline, which only provides small improvements
according to the authors, recommends to use a test statistic that
is free from the influence of its variance in order to achieve
a better accuracy. When describing algorithm and results, we
point out how these guidelines are followed.

A. The Bootstrap

The bootstrap [7] is a powerful statistical method that
allows for obtaining distributions of an estimator of interest
θ by approximating them with empirical distributions. The
lack of knowledge on the probability models is compensated
by computational capabilities. The idea is to resample with
replacement a large number B of replica data sets from the
original data set. The resampled data sets are of the same size
as the original data set. Finally, statistics of interest are com-
puted using each bootstrap replica data set. The bootstrapped
distribution of the desired statistic is given by its B bootstrap
values. A detailed introduction to the implementation of the
bootstrap in signal processing is provided in [1].

III. BOOTSTRAPPED DETECTION ALGORITHM

A. Test statistic

In this section, we propose three nonparametric test statistics
for the bootstrapped empirical distributions: The Kolmogorov-
Smirnov test statistic (KS), the Cramér-von Mises test statistic
(CvM) and the Anderson-Darling test statistic (AD). Their
formulas are provided for the special case considered in
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our algorithm where the distributions of two samples are
compared.

The widely known KS statistic evaluates the maximum
difference between two distributions. For our problem of a
two sample test, we have to compare the EDF Fn of sample
X to Gm, the EDF of observed data Y . This results in

τKS2 = sup |F(x)−G(x)| ≈ sup |Fn(x)−Gm(x)|, (2)

where F and G represent the CDFs of samples X and Y ,
respectively, which are approximated by the samples’ EDFs Fn
and Gm. The KS statistic is formed by finding the maximum
distance between the EDFs. Hence, it is expected to provide
good results if there is high discrepancy between the values of
the CDFs F(x) and G(x) for some x. If there is no significant
peak difference between the CDFs, the KS test may lack
power.

An alternative test statistic is given in [8] with the goal of
capturing more subtle differences between distributions. The
two sample version of the CvM-criterion compares EDFs Fn
and Gm, by

τCvM2 =
nm

n+m

∫
∞

−∞

[Fn(x)−Gm(x)]2dHn+m(x), (3)

with Hn+m = n
n+m Fn(x) + m

n+m Gm(x) being the EDF of the
combination of X and Y . Instead of finding a maximum, we
integrate the squared deviations of the distributions. The test is
thus less sensitive to the peak difference in the distributions. It
rather considers the total sum of squared deviations between
the EDFs and is expected to thereby provide higher power
than KS tests.

The third test statistic is the AD statistic, proposed in [5].
It introduces a weighting function ψ(x) ≥ 0. In the case of
ψ(x) = 1, the AD and the CvM statistic are similar. The two
sample version is found in [9] and given by

τAD2 =
nm

n+m

∫
∞

−∞

ψ(x)[Fn(x)−Gm(x)]2dHn+m(x). (4)

ψ(x) allows for emphasizing certain parts of the distribution,
for example the tails, in quantifying the differences between
the distributions. For smaller sample sizes there are usually
few observations from the distribution’s tails. Consequently,
the differences between the tails of the EDFs are not neces-
sarily captured unless they are emphasized. In this paper,

ψ(x) =
1

Hn+m(x)(1−Hn+m(x))
,

which was also tested in [5]. It represents the reciprocal of
the variance of

√
n[Fn(x)−Gm(x)] and thereby puts higher

weight to the tails of the distributions than the other statistics
considered in this paper. As in (3), Hn+m denotes the EDF of
the combination of X and Y .

B. Detailed Description of the Algorithm

The training phase has to be carried out once before using
the sensor. During training, data is assumed to originate from
the unknown distribution corresponding to H0. During the

actual detection task, only the observation and the decision
phase need to be executed.

During the training phase, besides recording the training
data sample I of length s >> n, we also bootstrap the dis-
tribution of the test statistic τ under H0. Thus, the bootstrap
needs to be applied only once during the whole process, as
long as the ambient noise statistics do not change.

We resample a large number of B replica data sets from I
and split each resample into a bootstrap representation of X
and Y . Since H0 is assumed to be true, Y , X and I follow
the same distribution F . Assuming H0 when bootstrapping
fulfill s guideline 1 in [6]. Then, we compute τ for every
bootstrap representation of X and Y , obtaining in total B values
of the test statistic. Those form the empirical distribution of
τ under H0, which is used later in the decision phase. We set
the percentile q∗1−α

to the d(1−α) ·Be largest value of the
bootstrapped test statistic.

After completing the training, the sensor is used for the
actual detection task. Hence, it records the observation sample
Y of length m. Based on Y , we want to determine if the
distribution of the data has changed or if the observed data
obeys the same distribution as the training data. Note that it
is desirable to choose m as small as possible in order to keep
the process of recording observation data as short as possible.

To decide between H0 and H1, we randomly sample X of
size n << s from the training data sample and compute the
test statistic τ . Finally, if Eq. (1) holds, we decide in favor
of H0, otherwise, the alternate hypothesis H1 is accepted. In
other words, we accept H1 if τ differs sufficiently from the
value suggested by the empirical distribution of τ under H0.

The proposed bootstrapped detector is summarized in Al-
gorithm 1.

C. Validity and Consistency

In this section, we prove that the proposed bootstrap detec-
tion method approximates the threshold q1−α in (1).

Proposition 1: An approximation is valid if the probability
of τ crossing the approximating quantile q∗1−α

asymptotically
reaches the theoretical probability of missed detection α , i. e.

PF,G{|τ|> q∗1−α}→ α, as min{n,m}→ ∞. (5)

Proof 1: Let us use the definition of Sn(x) in [4],

Sn(x) =
√

n[Fn(x)−F(x)], (6)

with F denominating the theoretical underlying CDF and Fn
its empirical approximation. Since we do not want to decide
if a sample’s EDF is similar to an assumed theoretical CDF,
but compare the EDFs of two observed samples, we replace
F by the EDF Gm(x) of the second sample and obtain

Sn2(x) =
√

n[Fn(x)−Gm(x)]. (7)

As shown in [4], (5) holds for a KS-type of test statistic.
Additionally, it is stated in the second last paragraph of
Section 1 in [4] that the proof remains valid for contin-
uous functions of Sn(x). The CvM statistic, as defined in
(3), is a squared and integrated version of Sn2(x). AD is a
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Algorithm 1 Bootstrapped Signal Detector

Training Phase
Step 1.) Obtain a training datasample I = I1, . . . , Is of length
s from an unknown distribution function F .
Step 2.) Resample a large amount B of samples Z∗b,b =
1, . . . ,B of length n+m, from I.
for b = 1, . . . ,B do

Step 3.) Define Xb∗ = Zb∗
1 , . . .Zb∗

n and Y b∗ =
Zb∗

n+1, . . . ,Z
b∗
n+m.

Step 4.) Obtain the test statistic τb∗ using the bootstrap
samples Xb∗ and Y b∗.
end for
Step 5.) Obtain the the empirical (1− α)-quantile q∗1−α

from the empirical distribution of τ .
Observation Phase
Step 6.) Obtain an observation sample Y = Y1, . . . ,Ym of
length m from an unknown distribution function G.
Decision Phase
Step 7.) Sample the initialization sample X = X1, . . . ,Xn of
length n << s from I.
Step 8.) Compute test statistic τ for X and Y .
if |τ|< q∗1−α

then
Step 9.) Accept H0.

else
Step 9.) Accept H1.

end if

weighted version of CvM, in our case using the continuous
weight ψ(x) = 1

Hn+m(x)(1−Hn+m(x))
. Hence, both CvM and AD

are continuous functions of Sn2(x). By showing that CvM
and AD are continuous functions of Sn2(x), the two sample
version of Sn(x), the proof in [4] is also valid for these two
statistics. Hence, Proposition 1 holds for all three considered
test statistics.

Consequently, our devised algorithm can be used with all
three test statistics. Furthermore, in Section 2.5 of [4], the
consistency of the procedure is considered. For a consistent
test, pmd converges to zero under H1, when sample length
grows. According to [4], P1{τ >Cα}= 1 as n→∞, hence the
procedure is consistent.

IV. SIMULATION RESULTS

We tested the proposed algorithm for a variety of scenarios
and distributions. In this section, some of the results demon-
strating its performance are presented and pros and cons are
studied. We compare the results for different test statistics and
recommend which one to use.

We select α = 5% for all scenarios. The goal is to correctly
accept H0 very close to or above 95% in the case that the data
for both samples originate from the same distribution. Since
we use an empirical data set, slight deviations from the desired
95% are allowed and all those results are accepted as being
exact that do not deviate from the desired level by more than
1%. Hence, under H0, an acceptance level of at least 94% has

to be achieved. On the other hand, a low pmd is of interest.
Hence, when data sets X and Y obey different distributions,
the acceptance rate for H0 should be very low. The aim is
to keep it below 5% in our simulations. We set the number
of bootstrap resamples B = 1000 and use sample lengths of
n = 500 and m = 100, as long as not stated otherwise.

A. Choice of Test Statistic

The detection performance in distinguishing between dif-
ferent distributions is studied: Gaussian against Exponential
distributions and Rice against Rayleigh distributions. The
parameters of the distributions are chosen to shape the CDFs
as similar as possible, as illustrated in Figure 1. Parameter
values are given in the parentheses after distribution names,
i.e., N (1,1) denotes a Gaussian distribution with µ = σ = 1.
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Fig. 1. The CDFs used in the numerical simulations. The parameters are
chosen such that the distributions have similar shapes.

The first two columns of Table I name the tested distribu-
tions. F denotes the underlying CDF of the larger ambient
sample X , whereas G refers to the CDF of the smaller
observation sample Y . The remaining columns give the accep-
tance rates of H0 for the different test statistics: Kolmogorov-
Smirnov, Cramér-von Mises and Anderson-Darling.

In the first four lines in Table I, Exponential and Gaussian
distributions are compared. In lines one and two, X and Y
follow the same distributions, hence, an acceptance rate of
95% should be reached. AD meets the required rate for both
cases, the other two τ provide values close to the desired
percentage. However, we note that the acceptance level when
using CvM in line two falls off by more than 1%.

The results for testing Rice against Rayleigh in lines five to
eight confirm the previous observations: In lines five and six,
F = G and, again, AD achieves the desired rates. This time,
in line six, KS falls off by more than 1%.

Finally, it remains to look at the cases when X and Y are
drawn from different distributions. In lines three and four,
both, KS and AD test statistic, deliver good probability of
missed detection levels. The AD test, however, provides higher
power in both cases. The CvM test statistic falls off and fails to
provide the desired power level. Lines seven and eight present
the results for Rice and Rayleigh distributions. Again, AD
provides low levels of pmd . The results for CvM are close to
acceptable and KS is inaccurate.
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TABLE I
PERCENTAGE OF ACCEPTANCE OF H0 FOR n = 500 AND m = 100. THE AD

TEST PERFORMS THE BEST OVERALL.

F G KS CvM AD

Exp., λ = 1 Exp., λ = 1 94.28% 94.75% 95.65%

Gaus., µ = σ = 1 Gaus., µ = σ = 1 95% 93.8% 95.94%

Exp., λ = 1 Gaus., µ = σ = 1 5.16% 13.69% 0.09%

Gaus., µ = σ = 1 Exp., λ = 1 4.98% 14.65% 4.3%

Rice, ν = 1,σ = 1 Rice, ν = 1,σ = 1 95.42% 95.08% 95.56%

Ray., σ = 1 Ray., σ = 1 93.74% 94.71 95.53%

Rice, ν = 1,σ = 1 Ray., σ = 1 9.73% 6.67% 5.89%

Ray., σ = 1 Rice ν = 1,σ = 1 9.3% 5.94% 3.74%

In all considered cases, also those not included in this paper,
AD provides either the best or close to the best results in terms
of acceptance rate and missed detection level compared to the
other tested statistics. For some examples, CvM shows better
behavior than KS, for others, KS provides better values.

Since the values produced by AD are either better than or
close to the best provided by the other statistics, using AD is
recommended for our algorithm.

Finally, the weighting function of the Anderson-Darling
statistic can explain the high accuracy of acceptance rate when
H0 is true. While KS and CvM sometimes fail to satisfy
the required 95%-level of acceptance in Table I, AD always
achieves the required level of correctness. Having chosen
ψ(x) = 1

Hn+m(x)(1−Hn+m(x))
, we normalize Sn2 in (7) to form

the test statistic. This fulfills guideline 2 for bootstrapped
hypothesis tests in [6], which leads to a higher accuracy in
terms of level of acceptance.

B. Problems with Laplace against Gaussian Distributions

Distinguishing Laplace and Gaussian distributions is con-
sidered. Pd is very low, however, we are able to present a
solution on how to fix the lacking power of the procedure.
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Fig. 2. Laplace and Gaussian CDFs. Both are very similar with a slight
difference in the tails.

Also for both samples following a Laplace distribution,
the desired α level is clearly met, as the simulations show.
Unfortunately, since the CDFs are very similar (see Figure 2),
the level of pmd is almost always above 90% for KS, CvM

and AD. Apparently, the information provided by the observed
samples X and Y is not sufficient.

TABLE II
PROBABILITY OF ACCEPTING H0 WITH INCREASED SAMPLE SIZES

n = 2500 AND m = 500. ONLY AD PROVIDES SATISFYING RESULTS.

F G KS CvM AD

Lap., µ = 1 = 1 Lap., µ = b = 1 93.49% 95.95% 94.49%

Lap., µ = b = 1 Gaus., µ = σ = 1 63.35% 76.89% 0.35%

Gaus., µ = σ = 1 Lap., µ = b = 1 63.42% 66.49% 1.58%

Hence, the sample lengths n and m need to be increased.
To find out whether the proposed detector can at all deliver
a powerful test for this example, we repeated the simulations
with n = 2500 and m = 500. The results in Table II show very
good properties for AD. The other statistics still fail to fulfill
the desired power properties. This is to be expected, since the
differences between Laplace and Gaussian are in the tails, as
it can be seen in Figure 2. This again confirms our choice
of AD as preferred τ . By increasing the sample length, the
consistency of the method is restored.

V. CONCLUSION

In this paper an algorithm for fully non-parametric hy-
pothesis testing using empirical cumulative distributions is
proposed. No explicit assumptions on the probability models
are made. Instead, bootstrapping is used to approximate the
EDFs. The distributions of test statistics under hypothesis
H0 are learned from training data using the bootstrap. By
using Anderson-Darling type test statistics on approximated
EDFs, highly reliable performance is achieved, even if the
distributions differ only slightly in their tails. We also proved
that the proposed test achieves the desired error levels in
decision making without relying on large sample analysis and
Gaussianity. Simulations demonstrate the reliable performance
of the proposed detection algorithm.
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