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Abstract—Multivariance identification methods exploit input
signals with multiple variances for estimating the Volterra kernels
of nonlinear systems. They overcome the problem of the locality
of the solution, i.e., the fact that the estimated model well
approximates the system only at the same input signal variance of
the measurement. The estimation of a kernel for a certain input
signal variance requires recomputing all lower order kernels.
In this paper, a novel multivariance identification method based
on Wiener basis functions is proposed to avoid recomputing the
lower order kernels with computational saving. Formulas are
provided for evaluating the Volterra kernels from the Wiener
multivariance kernels. In order to further improve the nonlinear
filter estimation, perfect periodic sequences that guarantee the
orthogonality of the Wiener basis functions are used for Wiener
kernel identification. Simulations and real measurements show
that the proposed approach can accurately model nonlinear
devices on a wide range of input signal variances.

I. INTRODUCTION

The Wiener G-functionals [1], [2] were introduced to over-

come one of the main limitations of the Volterra filters, whose

polynomial terms are never orthogonal. The G-functionals

derive from the orthogonalization of the Volterra series for

white Gaussian inputs and allow the efficient identification

of nonlinear systems with the cross-correlation method [1].

This approach presents many drawbacks when applied to

stochastic inputs at the point that it is often considered just a

“legacy” method [3, page 77]. Indeed, it usually requires mil-

lions of samples to accurately estimate the nonlinear kernels.

Moreover, an exact white Gaussian input cannot be generated

due to the limitation of the input signal length and to the

input amplitude saturation. Furthermore, the central moments

of a Gaussian input soon depart from ideal values as the

moment order increases unless millions of values are used [4].

Some improvements of the first implementations of the cross-

correlation method (e.g., Lee-Schetzen [1]) were provided in

[4], [5] to reduce the input non-ideality and errors due to model

order truncation that affect the kernels diagonal points [4].

A known drawback of Volterra and Wiener theory [6] is

the input amplitude limitations related to convergence issues

when higher-order kernels are needed. The non-idealities of

input noise make the output mean square error (MSE) a

function of the input variance [4]. In particular, an accurate

This work was supported in part by DII Research Grant and by DiSPeA
Research Grant.

high order kernel estimation requires high input variances to

excite high order nonlinearities, but causing high identification

errors in lower order kernels. On the contrary, low input

variances produce an underestimation in high order kernels.

This phenomenon is known as the “locality” of Volterra series

identification, i.e., a Volterra series is optimal only for input

variances in a neighborhood of that used for identification [7].

An improved cross-correlation method for nonlinear system

identification based on multiple-variance white Gaussian noise

(WGN) has been proposed in [7]: low input variances are

used to model lower order kernels, while the input variance is

gradually increased for higher order kernels.

The Wiener basis functions [8] are a set of polynomial basis

functions, which are orthogonal for white Gaussian noise in-

puts. They can arbitrarily well approximate any discrete time,

time-invariant, finite memory, continuous, nonlinear system. A

linear combination of Wiener basis functions forms a Wiener

nonlinear (WN) filter [2], i.e., a double truncated, with respect

to order and memory, Wiener series.

Perfect periodic sequences (PPSs) [9], [10] have been pro-

posed for linear [11], [12] and nonlinear [8], [13]–[17] system

identification as an alternative to stochastic inputs. A PPS

ensures that the cross-correlation between any two different

basis functions of the system, estimated over a period, is zero.

Therefore, an unknown system can be efficiently identified

with the cross-correlation method using a PPS as input signal.

PPSs suitable for the identification of WN filters have been

recently proposed in [8] to reduce the accuracy problems in

estimating the kernels diagonal points thanks to the perfect

orthogonality of the Wiener basis functions for PPSs.

In this paper, a multivariance identification method based on

PPSs and WN filters, expressed in term of Wiener basis func-

tions, is presented to exploit the ideal properties of PPSs and

the computational saving provided by Wiener basis functions.

The paper is organized as follows. First, the Wiener basis

functions are described in Section II. The multiple-variance

approach and the PPSs derivation are reported in Section III

and Section IV. Then, the choice of the multiple variances

is discussed in Section V. Finally, experimental results and

concluding remarks are shown in Section VI and Section VII.

The following notation is used in the paper: E[·] denotes

mathematical expectation, <·>L is the average over a period

of L samples, N (0, σ2
x) is the zero mean and variance σ2

x

normal distribution.
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II. THE WIENER BASIS FUNCTIONS

The Wiener basis functions [8] are a set of polynomial basis

functions that can arbitrarily well approximate any discrete

time, time-invariant, finite memory, continuous, nonlinear sys-

tem,

y(n) = f [x(n), x(n− 1), . . . , x(n−N + 1)], (1)

being f a continuous function from R
N to R. The Wiener

basis functions are orthogonal for any white Gaussian input

signal x(n) ∈ N (0, σ2
x). For N = 1, the Wiener basis func-

tions can be obtained by applying the Gram-Schmidt orthogo-

nalization to the polynomial set {1, x(n), x2(n), x3(n), . . .}
for white Gaussian inputs, obtaining the set

{1, x(n), x2(n)− σ2
x, x3(n)− 3σ2

xx(n), . . .}. (2)

For N > 1, the Wiener basis functions are derived by

(i) writing the one-dimensional basis functions in (2) for

x(n), x(n − 1), . . . , x(n − N + 1) and (ii) multiplying the

terms with different variables in any possible manner, avoiding

repetitions. The Wiener basis functions and their linear combi-

nations form an algebra on any compact in R
N that satisfies

the requirements of the Stone-Weierstrass theorem [18] and

can arbitrarily well approximate the system in (1).

A WN filter is defined as the linear combination of Wiener

basis functions up to a certain order P and memory N . For

the sake of simplicity, an order 3 and memory N WN filter

will be considered, having the following diagonal form [19]:

y(n) = k0 +
N−1∑

t=0

k1,tx(n− t) +
N−1∑

t=0

k2,t,t[x
2(n− t)− σ2

x]+

+

N−1∑

r=1

N−1−r∑

t=0

k2,t,t+rx(n− t)x(n− t− r)+

+

N−1∑

t=0

k3,t,t,t[x
3(n− t)− 3σ2

xx(n− i)]+

+
N−1∑

r=1

N−1−r∑

t=0

k3,t,t,t+r[x
2(n− t)− σ2

x]x(n− t− r)+

+

N−1∑

r=1

N−1−r∑

t=0

k3,t,t+r,t+rx(n− t)[x2(n− t− r)− σ2
x]+

+

N−2∑

r=1

N−1∑

s=r+1

N−1−s∑

t=0

k3,t,t+r,t+sx(n− t)x(n− t− r)x(n− t− s).

(3)

The set of coefficients kl,... of equal order l forms the so-called

l-th kernel of the WN filter.

Since the Wiener basis functions are orthogonal for a

white Gaussian input signal x(n) ∈ N (0, σ2
x), the WN filter

coefficients can be estimated with the cross-correlation ap-

proach, i.e., computing the cross-correlation between the basis

functions and the unknown system output. Assume wj(n) to

be one of the basis functions

{1, x(n− t), [x2(n− t)− σx], x(n− t)x(n− t− r),
[x3(n− t)− 3σ2

xx(n)], [x
2(n− t)− σx]x(n− t− r),

x(n− t)[x2(n− t−r)−σx], x(n− t)x(n− t−r)x(n− t−s)}

for any r, s, and t, and kj the corresponding coefficient. Then,

kj =
E[y(n)wj(n)]

E[w2
j (n)]

, (4)

where y(n) is the unknown nonlinear system output. The

expectations are usually computed using time averages over

large periods of input samples.

Once the WN filter in (3) has been identified, it can be can

converted into a Volterra filter, by equating the polynomial

terms of equal degree:

y(n) = h0 +

N−1∑

t=0

h1,tx(n− t) +

N−1∑

t=0

h2,t,tx
2(n− t)+

+

N−1∑

r=1

N−1−r∑

t=0

h2,t,t+rx(n− t)x(n− t− r)+

+
N−1∑

t=0

h3,t,t,tx
3(n− t)+

+

N−1∑

r=1

N−1−r∑

t=0

h3,t,t,t+rx
2(n− t)x(n− t− r)+

+

N−1∑

r=1

N−1−r∑

t=0

h3,t,t+r,t+rx(n− t)x2(n− t− r)+

+
N−2∑

r=1

N−1∑

s=r+1

N−1−s∑

t=0

h3,t,t+r,t+sx(n− t)x(n− t− r)x(n− t− s)

(5)

III. MULTIVARIANCE SYSTEM IDENTIFICATION

Multivariance methods have been proposed to solve the

“locality problem” by using a different variance to estimate

each of the kernels. The original multivariance approach

[7] is based on the cross-correlation between a particular

Volterra system, known as the delay system
∏l

i=1 x(n − ti),

and the system output E{y(n)
∏l

i=1 x(n − ti)}. Note that

E{y(n)x(n−t)x(n−t−r)x(n−t−s)} = 3!σ6
xk3,t,t+s,t+r−

σ4
x(k1,tδt+s,t+r + k1,t+rδt,t+s + k1,t+sδt,t+r).

The unitary impulses, δt1,t2 , come from the first order Wiener

kernel and are the source of the identification problem of the

so-called diagonal points. The corrections needed in diagonal

points identification require to recompute the lower odd/even

order kernels for each odd/even order kernel to be identified

[7]. In contrast, exploiting the Wiener basis functions and the

WN filter in (3), the kernels kl,... become independent of each

other and can be separately estimated using (4).

Clearly, the Wiener basis functions and the WN filter

coefficients change with the variance of the input signal. Let

us indicate with k
(i)
l,... the coefficients of the kernel of order l

estimated with the variance σx,i, with i = 0, 1, ... Given the

multivariance Wiener kernels {k
(0)
0 , k

(1)
1,. , k

(2)
2,.,., ...}, we want

to estimate the corresponding Volterra kernels, which are

independent of the input variance. Equating (3) and (5), it can

be noticed that the two largest order kernels of the WN filter

are always equal to the corresponding kernels of the Volterra
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filter for any input variance σ2
x, i.e., for r = 0, .., N − 2,

s = r, .., N − 1, t = 0, .., N − 1− s:

h3,t,t+r,t+s = k
(3)
3,t,t+r,t+s (6)

and for r = 0, .., N − 1, t = 0, .., N − 1− r:

h2,t,t+r = k
(2)
2,t,t+r. (7)

Equating the first order terms in (3) and (5) for σx = σx,1,

since k
(1)
3,t,t+r,t+s = k

(3)
3,t,t+r,t+s for all r, s, and t, with some

manipulations it results

h1,t = k
(1)
1,t − σ2

x,1k
(3)
3,t,t,t − σ2

x,1

N−1∑

u=0

(k
(3)
3,t,u,u + k

(3)
3,t,t,u). (8)

Equating the constant terms in (3) and (5) for σx = σx,0, since

k
(0)
2,t,t+r = k

(2)
2,t,t+r for all r and t, we have

h0 = k
(0)
0 − σ2

x,1

N−1∑

t=0

k
(2)
2,t,t. (9)

The procedure is described for WN and Volterra filters of order

3, but it can be applied also for higher order filters.

IV. PERFECT PERIODIC SEQUENCES FOR WN FILTERS

The main limitation of the cross-correlation approach in

(4) using Gaussian input signal is the huge number of input

samples (in the order of millions or more) necessary to

guarantee the approximate orthogonality of the basis function

and a reasonable accuracy in the sample estimations. PPS are

periodic sequences that guarantee the perfect orthogonality

of the basis functions over a period and thus can accurately

estimate the coefficients of the filter with the cross-correlation

approach replacing the expectations in (4) with time averages

over a period. A PPS xp(n) of period L suitable for the identi-

fication of the Wiener filters up to an order P and memory N
and with Gaussian variance σ2

x can be developed following the

approach of [8]. The PPS xp(n) can be derived by imposing

that all joint moments of the input signal, estimated over a

period, involved in the identification of the WN filter, are equal

to those of a white Gaussian signal x(n) ∈ N (0, σ2
x). Thus,

the following system of nonlinear equations is imposed:

< xk0

p (n) · xk1

p (n− 1) · . . . · xkN−1

p (n−N + 1) >L=

= µk0
· µk1

· . . . · µkN−1

(10)

for all k0, . . . , kN−1 ∈ N (k0 > 0 and k0+ . . .+kN−1 ≤ 2P ),

and µk the k-th moment of the Gaussian process N (0, σ2
x),

µk = E[xk(n)] =

{
0 for k odd,

σk
x(k − 1)!! for k even,

(11)

with q!! = q · (q − 2) · (q − 4) · . . . · 1.

The nonlinear system in (10) has a number of equations

Q =
(
N+2P−1

N

)
and for sufficiently large L is an underdeter-

mined system of equations in the variables xp(n). The system

in (10) has been solved using the Newton-Raphson method,

implemented as in [20, ch. 9.7] starting from a Gaussian

distribution of the variables with variance σ2
x. Different PPSs

for WN filters of order 3, signal power σ2
x = 1/12, and

memory N ranging from 5 to 20 have been developed and

are available for download at [21].

If we scale the PPS by a factor c, any order k joint moment

in (10), with k = k0+k1+ . . .+kN−1, is scaled by a factor ck

and the sequence is still a PPS suitable for the identification

of WN filters but for Gaussian variance c2σ2
x. Thus, the PPSs

can be used for the multiple-variance identification approach of

Section III. It suffices to replace the input signals with PPSs

of appropriate variance and to estimate all cross-correlation

terms over a PPS period.

When a PPS suitable for WN filter up to order P and

memory N is used for identifying a system with order greater

than P , the estimation of the Wiener kernels will be affected

by an error. Following arguments similar to those in [14], it can

be proved that the error affects mainly the highest order kernels

and, in general, only mildly low-order kernels. Similarly, when

a PPS suitable for WN filter up to order P and memory N
is used for identifying a system with memory greater than

N , the estimation of the Wiener kernels will also be affected

by an error. It can be proved that this error affects mainly the

coefficients of kernels associated with the most recent samples,

x(n), x(n−1), ..., and, in general, only mildly the coefficients

of the basis functions associated with the less recent samples,

x(n−N + 1), x(n−N + 2).

V. OPTIMAL CHOICE OF THE MULTIPLE VARIANCES

An important problem is the choice of the multiple variances

σ2
x,i used to contrast the locality of the solution. A possible

criterion is to estimate each kernel at the input signal variance

that minimizes the error in the kernel coefficients identifi-

cation. For Gaussian inputs, the errors are due to the finite

length of the input sequence. For PPS, the errors are caused

by the unknown system basis functions having memory or

order larger than those considered in the PPS. In both cases,

it can be proved that the mean square deviation MSDi in the

identification of the i-th kernel with input variance σ2
x,i is:

MSDi = η0,iσ
−2i
x,i +η1,iσ

2(1−i)
x,i +...+ηK,iσ

2(K−i)
x,i +ην,iσ

2
νσ

−2i
x,i ,

(12)

being K the order of the unknown system, possibly larger

than the order P of the identification filter, σ2
ν the variance of

the additive zero mean Gaussian noise, and η0,i, ..., ηK,i, ην,i
constant coefficients depending on the unknown system ker-

nels and on the cross-correlation between the i-th order basis

functions and some error terms. For space limitation, the proof

of (12) is omitted and will be shown in a future work.

Even though the coefficients ηl,i are rarely known and thus

σ2
x,i cannot be found solving (12), the equation is very useful

to guide the choice of the variances. Indeed, if all the unknown

system kernels of order larger than P are negligible, according

to (12) the kernel of order P should be identified at the largest

possible variance. The kernel of order 0 can be estimated at the

lowest possible variance, while the kernel of order 1 should be

estimated at the lowest variance for which the effect of noise is

negligible. The other kernels should be estimated with variance

comprised between that of kernel 1 and kernel P . As a rule
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Fig. 1. NMSE obtained in Test 1. (a) Noise. (b) Music.

of thumb, each i-th kernel could be estimated at the variance

that maximizes the ratio between the power of the i-th order

term and the total output power.

VI. EXPERIMENTAL RESULTS

Several experiments have been carried out to test the ex-

ploitation of multiple-variance PPSs in the cross-correlation

method, making comparisons with multiple-variance WGN as

described in [7]. Moreover, for the sake of completeness, the

results achievable with the traditional cross-correlation method

based on the same input variance for all kernels are reported.

Different test sessions have been accomplished, considering

a simulated nonlinear system as a first step and then, a real-

world nonlinear device, modelled using a third-order Volterra

series with memory 10 and 25, respectively. The adopted

PPS sequence has order P = 3, memory N = 25, period

L = 1393024, and variance σ2
pps = 1/12, and the WGN

sequence has length L. A sampling frequency fs = 44.1 kHz

has been adopted. For the multiple-variance cross-correlation

method, since in the considered examples the second order

kernel is dominant at high input variances, σ2
x,0 = σ2

x,1 =
σ2
pps

16
and σ2

x,2 = σ2
x,3 = σ2

pps have been assumed. The same two

values for variance have been considered for the traditional

cross-correlation method. Therefore, the model identification

has been performed considering the following settings: (1)

WGN with single variance σ2
x,0, (2) WGN with single vari-

ance σ2
x,3, (3) WGN with multiple-variance, (4) PPS with

single variance σ2
x,0, (5) PPS with single variance σ2

x,3, (6)

PPS with multiple-variance.
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Fig. 2. NMSE obtained in Test 2. (a) Noise. (b) Music.

Then, the performance has been evaluated applying WGN

and music of length 44 100 samples to the system under test

and to the model, assuming several input variances. Results are

reported in the following sections in terms of the normalized

MSE (NMSE) in the frequency domain between the output

of the system under test y(n) and the output of the identified

Volterra series ŷ(n), according to the following formula:

NMSE = 10 log10

∑N

n=1

[
|Y (fn)| −

∣∣∣Ŷ (fn)
∣∣∣
]2

∑N

n=1 |Y (fn)|
2

. (13)

A. Simulated system

The nonlinear system under test for the simulated scenario

is the Wiener model adopted in [7]. This system is a cascade

of a linear filter and a static nonlinearity. The linear part is a

low-pass filter given by the scaling function of the Daubechies

Wavelet of order ten (D10). The nonlinearity can be described

by the following function:

g(x) =
4.5

1 + 2e−x
−

4.5

3
(14)

where g̃(x) = x + 9
54x

2 − 27
486x

3 is the third-order Taylor

expansion of g(x). The cascade of g̃(x) and the linear part

can be described by a third-order Volterra system with known

kernels. This system has been modelled in Test 1, thus

excluding the truncation error. Then, the cascade of (14) and

the low-pass filter has been considered in Test 2. A Gaussian

noise with variance 2 · 10−6 has been added to the output.

Once the model has been obtained, inputs with variance σ2
x in

the interval
[
(1/256, . . . , 1/4, 1/2, 1, 2, 4, . . . , 16)σ2

pps

]
have
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been adopted. Figure 1 shows that the exploitation of multiple-

variance PPSs provides two advantages at the same time, i.e.,

the input region in which the error has acceptable values both

for noise and music is widened, thus, overcoming the locality

problem, and accuracy is improved with respect to stochastic

input. Analogous conclusion can be gathered from Figure 2,

where the overall performance is slightly worse than in Figure

1, due to the presence of the truncation error that affects all

the obtained models.

B. Real system

The real-world device assumed in Test 3 is the Presonus

TubePRE microphone/instrument tube preamplifier. It provides

a drive potentiometer controlling the amount of tube satura-

tion, i.e., the amount of applied distortion. The device has been

set to provide a second harmonic distortion of 4.2% and third

harmonic distortion of 0.5% on a 1 kHz tone signal. Once

the model has been obtained, inputs with variance σ2
x in the

interval
[
(1/4096, . . . , 1/4, 1/2, 1) σ2

pps

]
have been adopted.

The results reported in Figure 3 are consistent with those

obtained in the simulated test session, where the improvements

provided by multiple-variance PPSs can be noted especially

for music in Figure 3(b).

VII. CONCLUSION

A novel method for nonlinear system identification has been

presented based on the exploitation of WN filters and multiple-

variance PPSs applied to the cross-correlation technique. In

this way, the recomputation of all lower order kernels for

the estimation of a kernel for a certain input signal variance

is avoided. Moreover, both the accuracy and the locality

problems can be solved. The performance has been evaluated

on both simulated and real-world nonlinear systems, showing

the expected effectiveness on a wide range of input variances.
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