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Abstract—A distortionless speech extraction in a reverberant
environment can be achieved by an application of a beamforming
algorithm, provided that the relative transfer functions (RTFs)
of the sources and the covariance matrix of the noise are
known. In this contribution, we consider the RTF identification
challenge in a multi-source scenario. We propose a successive
RTF identification (SRI), based on a sole assumption that sources
become successively active. The proposed algorithm identifies
the RTF of the ith speech source assuming that the RTFs of
all other sources in the environment and the power spectral
density (PSD) matrix of the noise were previously estimated.
The proposed RTF identification algorithm is based on the
neural network Mix-Max (NN-MM) single microphone speech
enhancement algorithm, followed by a least-squares (LS) system
identification method. The proposed RTF estimation algorithm
is validated by simulation.

I. INTRODUCTION

Beamforming is one of the most commonly used techniques
in microphone array processing. Typically, a beamformer is
used to obtain a spatial focusing on the desired speech source,
while reducing the interfering sources and the background
noise [1], [2]. A well-known beamforming criterion is the
linearly constrained minimum variance (LCMV) aiming at
minimizing the noise power at the beamformer output, under a
set of linear constraints that control the array beam shape, such
that the desired signal remains undistorted while interfering
signals are rejected [3], [4]. In a reverberant environment,
the LCMV constraints set is often expressed in terms of the
relative transfer functions (RTFs) of the sources, where each
RTF describes the coupling between the microphones as a
response to a given source [5].

The RTF estimation challenge in a noisy environment with
a single active speech source is well studied in the literature.
Gannot et al. [5] exploit the nonstationarity of speech signals
to estimate the RTF. Cohen [6] utilized the speech presence
probability (SPP) in the time-frequency domain to identify
the time-frequency instances that consist of speech signal.
The time-frequency instances that consist of speech signal are
then utilized to derive an RTF estimator. A subspace-based
approach to RTF identification was proposed by Markovich-
Golan et al. [4], where the RTF estimate is obtained by solving
a generalized eigenvalue problem. A comparative survey of the
covariance subtraction and the covariance whitening methods
for RTF estimation was presented by Markovich-Golan and
Gannot [7].

RTFs estimation in a multiple and concurrent speakers
scenario was recently considered in the literature. It was

proved by Hadad et al. [8] that knowledge of a basis that spans
the subspace of the desired sources and a basis that spans the
subspace of the interfering sources suffices for implementing
the LCMV beamforming algorithm. The aforementioned de-
sired and interfering sources subspaces can be estimated in
a scenario where all the desired sources are simultaneously
active and all the interfering sources are simultaneously active.
However, signal segments in which desired and interfering
sources are simultaneously active cannot be used for estima-
ting the subspaces. Hassani et al. [9] proposed a method for
estimating the desired and the interfering sources subspaces
by exploiting signal segments with concurrent activity of the
desired and the interfering sources. It was assumed that an
initial estimate of the desired and interfering sources subspaces
is available, then, the individual subspace estimates were
projected onto the joint signal subspace of all the desired
and interfering sources. The procedure results in an improved
estimate of the individual subspaces as compared with the
initial estimates by exploiting signal segments with concurrent
activity of the desired and the interfering sources.

Deleforge et al. [10] proposed a generalization of the
RTFs definition to several sources. The generalized RTFs are
defined through a multichannel, multi-frame spectrograms of
the received, noise-free signal.

In this work we consider a multi-source scenario. We
propose a successive RTF identification (SRI) technique, based
on the sole assumption that sources become successively
active. Namely, we address the challenge of estimating the
RTF of the ith speech source while assuming that the RTFs
of all other currently active sources in the environment and
the power spectral density (PSD) matrix of the noise were
previously estimated. The proposed SRI algorithm first blocks
the speech signals from the previously estimated RTFs. A
single channel speech enhancement algorithm is then applied
to one of the blocked signals and results in an estimation of the
ith speech component. The estimation of the ith speech signal
is then utilized as an input to a least-squares (LS) system
identification algorithm which results in an estimate of the
desired RTF. In this work, we utilize the NN-MM single
microphone speech enhancement algorithm [11]. However,
alternative single microphone speech enhancement methods
are also applicable to the challenge at hand.
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II. PROBLEM FORMULATION

A. Data model

Consider an array consisting of M microphones capturing
a time-varying acoustical scene. Each of the involved signals
propagates through the acoustic environment before being
picked up by the array. In the short-time Fourier transform
(STFT) domain, the nth speech source is denoted sn(`, k), the
acoustic transfer function (ATF) relating the nth source and
the mth microphone is denoted gm,n(k), and the stationary
noise at the mth microphone is denoted vm(`, k), where ` is
the frame index, and k is the frequency index. The received
signals in the STFT domain can be formulated in a vector
representation

z(`, k) =
N∑
n=1

In(`)hn(k)xn(`, k) + v(`, k), (1)

where N is the number of sources of interest, xn(`, k) =
g1,n(k)sn(`, k), In(`) ∈ {0, 1} indicates the activity of
sn(`, k) and hn(k) is the RTF vector of the nth source defined
as

hn(k) =

[
1,
g2,n(k)

g1,n(k)
, · · · , gM,n(k)

g1,n(k)

]T
. (2)

Considering the sources activity pattern, we assume that the
speech sources become active in a successive manner. Ac-
cordingly, the activity indicator function of the nth source is
defined by

In(`) =


0, if ` ≤ `n
1, if `n < ` ≤ `n+1

An, otherwise.
(3)

where An ∈ {0, 1} is a Bernoulli random variable. The
noise v(`, k) is assumed active through the entire measure-
ment period. The proposed activity pattern dictates that the
speech sources do not become simultaneously active and that
they are active for a sufficient amount of time before they
become inactive again. The considered activity pattern may
be practical, for example, in a noisy conference call scenario.

B. Multichannel speech extraction

In many applications, a group of the speech sources is desi-
red while the other sources are regarded as interference. Thus,
we are often interested in extracting the desired signals from
the noisy measurements. The extraction can be accomplished
by applying a beamformer w(`, k) to the received signal.
Assuming M > N , w(`, k) can be chosen to satisfy the
LCMV criterion [12]

w(`, k) = argmin
w

{
wH(`, k)Φvv(k)w(`, k)

}
subject to HH(`, k)w(`, k) = g(`, k), (4)

where Φvv(k) is the PSD matrix of the noise v(`, k),
H(`, k) ∈ CM×N such that the nth column of H(`, k) is

equal to hn(k) and g(`, k) ∈ CN×1 is the constraint vector.
The well-known solution to (4) is given by

wLCMV(`, k) = Φ−1vv (k)H(`, k)×(
HH(`, k)Φ−1vv (k)H(`, k)

)−1
g(`, k). (5)

The effectiveness of wLCMV in the desired speech extraction
task is well-established [4]. In order to apply (5), one is
required to estimate the RTFs matrix H(`, k) and the noise
PSD matrix Φvv(k). The noise PSD matrix can be estimated
straightforwardly by an application of a sample covariance
estimator

Φ̂vv(k) =
1

`1

`1∑
`=1

z(`, k)zH(`, k). (6)

The challenge of estimating the RTF of the first speech
source x1(`, k) is well-studied in the literature, provided it
is active alone. For instance, h1(k) can be estimated by
applying the subspace-based RTF estimator [4], which is based
on the generalized eigenvalue problem for the matrix pencil
(Φ̂zz(k), Φ̂vv(k)), explicitly

Φ̂zz(k)u(k) = λ(k)Φ̂vv(k)u(k), (7)

where λ(k) and u(k) is an eigenvalue-eigenvector pair and
Φ̂zz(k) is the sample covariance of the measurements

Φ̂zz(k) =
1

`2 − `1

`2∑
`=`1+1

z(`, k)zH(`, k). (8)

Due to the single-source scenario, the eigenvector u(k) that
belongs to the largest eigenvalue λ(k) is a scaled version of
h1(k). Since, by definition, the first entry of h1(k) is equal to
1, the eigenvector u(k) can be normalized to yield an estimate
of h1(k)

ĥ1(k) =
Φ̂vv(k)u(k)

iT Φ̂vv(k)u(k)
, (9)

where i = [1, 0, · · · , 0]T . In the following section we will
propose an identification procedure for the other RTFs, namely
hn(k), n > 1.

III. SUCCESSIVE RTF IDENTIFICATION

When multiple speech sources are concurrently active the
RTF estimators proposed in [5],[4] are not valid. In the sequel
we propose the SRI algorithm for hi(k) identification, under
the assumption that the RTFs hn(k), n < i of the previously
active sources in the environment were already identified.

A. Blocking the previously estimated RTFs

Let us consider frames ` > `i, and assume that the
estimators ĥn(k), 0 < n < i are already available. The
received signal (1) can be projected onto the null subspace

of
{

ĥn(k)
}i−1
n=1

by an application of the blocking matrix [13]

B(k) = IM×M −C(k)(CH(k)C(k))−1CH(k), (10)
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where C(k) ∈ CM×i−1 such that the nth column of C(k) is
equal to ĥn(k). Applying the blocking matrix to the received
signals results in zb(`, k) = B(k)z(`, k):

zb(`, k) = B(k)hi(k)xi(`, k) + B(k)v(`, k) + εεε(`, k), (11)

where εεε(`, k) =
∑i−1
n=1 B(k)hn(k)xn(`, k). Note that under

the assumption of ĥn(k) ≈ hn(k), 0 < n < i the additive
contributions of the blocked speech sources to (11) are negli-
gible. Consequently, we can assume that εεε(`, k) ≈ 0.

B. Single channel speech enhancement by NN-MM

We will now apply the NN-MM algorithm to enhance the
speech component in the blocked signals (11). The NN-MM
algorithm merges the generative Mixture of Gaussians (MoG)
model and the discriminative deep neural network (DNN) ap-
proach. The utilized NN-MM algorithm comprises an existing
phoneme-based MoG in which each Gaussian represents a
different phoneme, and an existing DNN phoneme-classifier
which classifies time-frame features to one of the phonemes
in the phoneme-based MoG [11].

We apply the NN-MM algorithm to enhance the speech
component in zb(`, k)

1, one of blocked signals:

zb(`, k) = iT zb(`, k) = α(k)xi(`, k) + vb(`, k), (12)

where α(k) = iTB(k)hi(k) and vb(`, k) = iTB(k)v(`, k).
The noise vb(`, k) is modeled by a single Gaussian, estimated
during speech absence frames. The DNN estimates the phone-
mes probabilities, and an SPP ρ(`, k) is calculated by applying
the maximization approximation approach [14].

A soft spectral attenuation which was found useful for
speech enhancement [11], [15] is then applied:

x̃i(`, k) =
((( hhh
α(k)xi(`, k)

= zb(`, k)ρ(`, k) + βzb(`, k)(1− ρ(`, k)) (13)

where β is a design parameter controlling the tradeoff between
noise attenuation and speech distortion. In this work, x̃i(`, k)
is utilized only for estimating hi(k). Thus, noise attenuation is
of higher importance than the speech distortion. Accordingly,
we set β to result in an aggressive noise attenuation.

C. Least squares RTF identification

Given x̃i(`, k), a scaled estimate of xi(`, k), we can define
the following LS optimization problem

θ̂θθ(k) = argmin
θθθ(k)

‖z(`, k)− θθθ(k)x̃i(`, k)‖2. (14)

1Note that an adjustment of the STFT analysis frame length may be
required. The phoneme classifier requires that the frame duration of zb(`, k)
is equal to a typical phoneme pronunciation time. An application of the rest of
the SRI algorithm dictates a frame duration which is longer than the length
of the associated acoustical impulse responses in the considered enclosure.
Accordingly, one may need to adjust the zb(`, k) frame size prior to applying
the NN-MM, and subsequently to readjust the NN-MM output signal frame
size.

Algorithm 1: Sequential RTF estimation
Initialization:

1. Utilize frames 0 < ` ≤ `1 to compute Φ̂vv(k) using (6).
2. Utilize frames `1 < ` ≤ `2 to compute ĥ1(k) using (9).

Upon activation of si(`, k), i > 1:
1. Compute the blocking matrix B(k) using (10).
2. Compute the blocked signal zb(`, k) using (11). and (12).
3. Compute x̃i(`, k) using NN-MM (13).
4. Compute a scaled RTF estimate θ̂θθ(k) using (15).
5. Normalize θ̂θθ(k) using (16) to result in ĥi(k).

Output: ĥi(k)

the solution of (14) is given by [16]

θ̂θθ(k) =

`i+1∑
`=`i+1

x̃∗i (`, k)z(`, k)

`i+1∑
`=`i+1

x̃i(`, k)x̃∗i (`, k)

. (15)

Accordingly, we claim that θ̂θθ(k) is a scaled version of hi(k),
i.e. θ̂θθ(k) ≈ hi(k)/α(k). Since, by definition, the first entry of
hi(k) is equal to 1, the estimator θ̂θθ(k) can be normalized to
yield an estimate of hi(k)

ĥi(k) =
θ̂θθ(k)

iT θ̂θθ(k)
. (16)

The proposed SRI procedure is summarized in Algorithm 1.
It is worth noting that the proposed estimator ĥi(k) is, in ge-
neral, sub-optimal since the residual noise in x̃i(`, k) contains
components contributed by xj(`, k) ∀i 6= j and by vb(`, k).
Accordingly, the residual noise in x̃i(`, k) is correlated with
z(l, k) and may result in biased estimate of ĥi(k).

D. Practical considerations

The proposed SRI procedure, as summarized in Algo-
rithm 1, assumes that the activity indicator function of the ith
source Ii(`) is available to the algorithm. The SRI procedure
utilizes Ii(`) to address the challenge induced by a birth of
a speaker. In a practical scenario, Ii(`) should be deduced
form the measurements z(l, k). In addition, an RTF death
mechanisms is also required. Refer to [17] for an equivalent
discussion in dynamic scenarios.

Source counting methods [18] might be useful for detecting
the number of active sources in a specific time period. Since
a simultaneous birth and death of two independent speakers
seldom occurs, an SRI process might be triggered when an
increase in the number of active sources occurs. An RTF death
mechanism might be triggered when a decrease in the number
of active speakers occurs. For example, the ith RTF may be
considered as obsolete if the energy of x̂i(`, k) is below a
threshold for a predetermined period of time.
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Fig. 1. Blocking ability factor.

IV. SIMULATION STUDY

In this section we evaluate the performance of the pro-
posed algorithm, in a simulated 6 × 6 × 2.4 m room with
T60 ≈ 350 mSec. A uniform linear array comprising M = 8
microphones with 5 cm inter-spacing was positioned in the
center of the room. The sampling frequency of the system
is set to 16 KHz. Three acoustic sources were positioned at
a distance of 3 m from the array center. Namely, two equi-
power speech sources s1(t) and s2(t) impinged on the array
from angles of arrivals equal to 60◦ and 90◦, respectively,
and a stationary fan noise v(t) impinged the array with an
angel of arrivals equal to 120◦. The powers of the sources
are defined as σ2

s and σ2
v , respectively. The activity pattern of

the sources is set such that the time difference between s1(t)
and s2(t) activation is 10 seconds, following s2(t) activation
both sources remain active for additional 10 seconds. The
processing is executed in the frequency domain, the STFT
analysis window length is set to 512 samples for the NN-MM
and to 2048 for the rest of the SRI algorithm, with 75% overlap
between successive frames. We utilize the signal to noise ratio
(SNR), SNR = σ2

s /σ2
v , and the blocking ability factor (BAF)

to characterize the estimation results

BAFn
4
=

1

M − 1

M∑
m=2

σ2
m,n

σ2
m,v
×

E

{[
vm(t)− ĥm,n(t) ∗ v1(t)

]2}
E

{[
xm,n(t)− ĥm,n(t) ∗ x1,n(t)

]2} ,
(17)

where xm,n(t) is the speech generated by sn(t) as measured
by the mth microphone, vm(t) is the noise at the mth
microphone, σ2

m,n is the power of xm,n(t), σ2
m,v is the power

of vm(t), ĥm,n(t) is the estimated RTF relating the first and

Fig. 2. wLCMV1 responses towards the sources of interest.

the mth microphone as a response to sn(t) and E{[·]2} is
the power of [·]. The blocking ability factor BAFn measures
the ratio between the ability to block the nth speech source
and its inherent ability to block a random noise. BAF has a
major effect on the amount of distortion introduced by the
RTF-based GSC structure, due to desired speech leakage [5].

A. Results

In the first experiment, we tested the performance of the
SRI algorithm, for various SNR values. Our main goal in
this experiment is to estimate the RTF of the second source
h2(k), while utilizing only the time frames where both speech
sources are active `2 < `. In order to accomplish this task, we
computed Φ̂vv(k) and ĥ1(k) by utilizing earlier time frames,
as suggested in Algorithm 1. The resulting BAF of ĥ2(k) is
depicted in Fig. 1. We compare BAF2 for two cases. In the
first case, no single-channel speech enchantment is used i.e.
x̃2(`, k) = zb(`, k), while in the second case, (13) with β set
to attenuate the noise by 20 dB is applied. As can be readily
observed the application of the NN-MM algorithm improves
the resulting BAF2, especially for 5 < SNR < 25 dB.

In the second experiment, we set the SNR to 10 dB and
applied Algorithm 1 to compute Φ̂vv(k), ĥ1(k) and ĥ2(k).
Based on the estimated quantities, we computed two different
LCMV beamformers using (5). The constrains set of the
first beamformer wLCMV1

, is set to impose a distortionless
response to a source with an RTF equal to ĥ1(k) and a null
to a source with an RTF equal to ĥ2(k). The response of
the second beamformer wLCMV2

, is set to be distortionless
to a source with an RTF equal to ĥ2(k) and a null to a
source with an RTF equal to ĥ1(k). The response to the
stationary noise is unconstrained in both beamformers. The
resulting responses of wLCMV1

towards x1(`, k), x2(`, k) and
v(`, k) are depicted in Fig. 2, while the responses of wLCMV2

towards the aforementioned sources are presented Fig. 3. As
can be observed, applying wLCMV1 to z(`, k) results in an
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Fig. 3. wLCMV2 responses towards the sources of interest.

attenuation of the x2(`, k) component by more than 10dB
in the entire frequency band, while wLCMV2

maintains a
distortionless response towards x2(`, k) reasonably well.

V. SUMMARY

In this paper we addressed a successive RTFs identifica-
tion challenge in a multi-source scenario. We propose the
SRI technique based on the assumption that sources become
successively active. Particularly, we addressed the challenge of
estimating the RTF of the ith speech source while assuming
that the RTFs of all the other active sources in the environment
were previously estimated. The proposed SRI algorithm first
blocks the speech signals from the previously estimated RTFs.
A single channel speech enhancement algorithm is then app-
lied to one of the blocked signals and results in an estimation
of the ith speech component. The estimation of the ith speech
signal is then utilized as an input to a least-squares (LS)
system identification algorithm which results in an estimate
of the desired RTF. The proposed SRI method was verified in
a simulative study and shown to perform well in a wide range
of SNR levels.
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