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Abstract—We study the problem of sequential binary hy-
pothesis testing in a distributed multi-sensor network in non-
Gaussian noise. To this end, we develop three robust extensions
of the Consensus+Innovations Sequential Probability Ratio Test
(CISPRT), namely, the Median-CISPRT, the M-CISPRT, and
the Myriad-CISPRT, and validate their performance in a shift-
in-mean as well as a change-in-variance test. Simulations show
the superiority of the proposed algorithms over the alternative
R-CISPRT.

I. INTRODUCTION

This paper studies the problem of distributed sequential

hypothesis testing in a multi-sensor network when the assump-

tion of Gaussianity is violated. Each sensor node conducts

a sequential hypothesis test based on its own observations

and the information of its neighbors. The sequential test is

terminated as soon as enough information has been collected

to guarantee a certain level of estimation accuracy [1], so as to

minimize the average run length in resource-limited and time-

sensitive applications. We use a distributed architecture since

it avoids the problem of a single point of failure, which is

apparent in centralized networks with a fusion center [2]. In

order to be able to handle non-Gaussian noise, we propose

a robust version of the Consensus+Innovations Sequential

Probability Ratio Test (CISPRT) introduced in [3],[4]. In

contrast to the approach in [5], which uses the concept of least-

favorable distributions to robustify the CISPRT, we robustify

the innovations term of the update equation using a robust

estimator.

The contribution of this paper is twofold. First, we develop

three robust versions of the CISPRT algorithm, namely, the

Median-CISPRT, the M-CISPRT, and the Myriad-CISPRT,

by replacing the sample mean in the innovation term of the

update equation with the respective robust estimator. Second,

we evaluate the performance of the three robust algorithms

and compare them to the R-CISPRT from [5] in terms of the

average run length and the empirical probability of false alarm

and misdetection.

The paper is structured as follows: In Section 2 we for-

mulate the problem of shift-in-mean hypothesis testing in

a distributed sensor network and in Section 3 we give a

brief introduction of the CISPRT algorithm. In Section 4 we

show how to robustify the CISPRT algorithm using a robust

estimator and develop the Median-CISPRT, the M-CISPRT,

and the Myriad-CISPRT, respectively. Section 5 is dedicated

to simulations and conclusions are drawn in Section 6.

II. PROBLEM FORMULATION

Consider a connected network with N sensors to decide

between either of the simple hypotheses H0 and H1. The

network can be modeled as an undirected graph G = (V , E),
where V and E denote the set of sensor nodes and the set

of edges in the network, respectively. Let Ωi, i ∈ {1, 2...N},

denote the set of neighbors of sensor i. For a shift-in-mean

test, the null hypothesis and the alternative are formulated as

H0 : yi (t) = −µ+ gi (t)

H1 : yi (t) = µ+ gi (t)

with yi(t) representing the measurement of node i at time

instant t. Furthermore, µ and −µ denote the respective means

of the signal and gi(t) is an independent and identically

distributed, zero-mean white Gaussian noise process with

variance σ2
n. For a change-in-variance test, H0 and H1 are

given by

H0 : yi (t) = gi (t)

H1 : yi (t) = x(t) + gi (t)

where x(t) is the zero-mean signal of interest with variance

σ2
x.

In most practical applications, the assumption of Gaussian-

ity does not hold. Therefore, we want to design a test that is

robust against deviations from this assumption. To this end,

we will evaluate our algorithms in the face of measurement

noise of the ǫ-contamination type [6], i.e.,

gi(t) ∼ G = (1− ǫ)F + ǫ∆,

where F ∼ N (0, σ2) denotes the nominal distribution,

∆ ∼ N (0, κσ2) is the contaminating distribution with κ-times

higher variance, and ǫ is the contamination coefficient with

0 ≤ ǫ ≤ 0.5.

III. THE CISPRT ALGORITHM

The Consensus+Innovations Sequential Probability Ratio

Test (CISPRT) introduced in [3],[4] is a distributed version

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 2105



of Wald’s centralized SPRT [1]. Every node i in the network

computes its test statistic Si(t) according to [3],[4]

Si(t) =



wiiSi(t− 1) +
∑

jǫΩi

wijSj (t− 1)





︸ ︷︷ ︸

consensus

+



wiiηi(t) +
∑

jǫΩi

wijηj (t)





︸ ︷︷ ︸

innovations

(1)

where wij denotes the entries of an appropriate weight matrix

W that sum up to 1 and

ηi(t) = log

(
f1 (yi(t))

f0 (yi(t))

)

(2)

is the log-likelihood ratio of node i with fk (·) denoting the

probability density function under hypothesis Hk.

The test statistic Si (t) is recursively updated over time until

it crosses either one of the thresholds [5]

γu ≥
4(m+ 1)

7N

σ2
η,0

µη,0

[

log
(α

2

)

+ log

(

1− e
− N

2(m+1)

µ2
η,0

σ2
η,0

)]

(3)

γl ≤
4(m+ 1)

7N

σ2
η,1

µη,1

[

log

(
β

2

)

+ log

(

1− e
− N

2(m+1)

µ2
η,1

σ2
η,1

)]

,

(4)

that are derived based on the required false alarm and misde-

tection probabilities α and β, respectively. Here, m = Nr2

and r =
∥
∥W − 1

N
11

⊤
∥
∥ is the rate of information flow in the

network, where ‖·‖ and 1 denote the Euclidean norm and the

one-vector of length N , respectively. Furthermore, µη,k and

σ2
η,k are the mean and the variance of the log-likelihood ratio

under Hk. When one of the thresholds is crossed, the test is

stopped and a decision is made according to [3],[4]

H =

{
H0, Si(T ) ≤ γl
H1, Si(T ) ≥ γu

, (5)

where T denotes the stopping time.

IV. ROBUSTIFYING THE CISPRT USING ROBUST

ESTIMATORS

In this section we show how to robustify the CISPRT

against outliers using a robust estimator. Looking at (1), we

observe that the innovations part is a weighted average of

the log-likelihood ratios of the observations of node i and

its neighbors. Hence, the update equation can be reformulated

as

Si(t) =



wiiSi(t− 1) +
∑

jǫΩi

wijSj (t− 1)



+ η̂(t), (6)

with η̂(t) denoting the estimate of the innovations term at time

t. By weighting the information of node i and its neighbors

equally – a common choice when no a priori information on

the reliability of each node is available – we obtain the sample

mean

η̂mean(t) =
1

|Ωi ∪ {i}|

∑

j∈Ωi∪{i}

ηj(t), (7)

which is a non-robust estimator [6]. Since the update equation

is recursive, replacing the sample mean in the innovations part

with a robust alternative, such as the median, the M, or the

Myriad estimator, will robustify the consensus part as well

and, thus, yield a test statistic that can handle outliers.

An advantage of introducing robustness by changing the

combination rule instead of the log-likelihood ratio as pro-

posed in [3],[5] is the fact that the thresholds and decision

rules of the original CISPRT remain valid. In the following we

will detail our approach for three different robust estimators.

A. The Median-CISPRT

The most straightforward way of replacing the sample mean

in Equation (6) with a robust alternative is to use the median

η̂median(t). The estimate of the innovations term is calculated

as

η̂median(t) = median (η(t)) , (8)

with η(t) = vec
(
{ηj(t)}j∈Ωi∪{i}

)
denoting the vector of the

log-likelihood ratios of node i and its neighbors.

B. The M-CISPRT

The M-CISPRT is obtained by estimating the innovations

part of Equation (6) with an M-estimator. M-estimates can

be intuitively understood as a weighted average with weights

given by [6]

W (x) =

{
ψ(x)
x
, x 6= 0

ψ′(0), x = 0
, (9)

where ψ(x) is a score function and ψ′(x) its first derivative.

In this work we consider Huber’s and Tukey’s score functions

that are defined as [7],[8]

ψHub(x) =

{
x, |x| ≤ cHub

cHubsign(x), |x| > cHub
, (10)

and

ψTuk(x) =

{

x− 2 x3

c2
Tuk

+ x5

c4
Tuk

, |x| ≤ cTuk

0, |x| > cTuk

, (11)

respectively.

The M-estimate of the innovations term is obtained by

recursively calculating [6], [9]

wkj =W

(

ηj(t)− η̂
(k)
M (t)

σ̂(η(t))

)

(12)

η̂
(k+1)
M (t) =

∑

j∈Ωi∪{i} wkjηj(t)
∑

j∈Ωi∪{i} wkj
(13)

until
|η̂

(k+1)
M

(t)−η̂
(k)
M

(t)|

σ̂(η(t)) < ε for a very small, posi-

tive constant ε. The algorithm can be initialized by setting
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η̂
(0)
M (t) = η̂median(t) and estimating the scale using the

normalized median standard deviation according to [6]

σ̂mad(η(t)) = 1.483 · median (|η(t)− η̂median(t)|) . (14)

C. The Myriad-CISPRT

The third robust estimator we consider in this work is the

myriad, which estimates the innovations term according to

[10],[11]

η̂myriad(t) = argmin
η

∏

j∈Ωi∪{i}

[

k2 + (ηj(t)− η)
2
]

(15)

where k is a freely tunable parameter. A common choice is to

set k = σ̂mad(η(t)) [11].

V. SIMULATIONS

In the following we evaluate the standard CISPRT, our three

proposed robust algorithms, namely, the Median-CISPRT,

the M-CISPRT, and the Myriad-CISPRT, as well as the R-

CISPRT from [5] in a shift-in-mean as well as a change-

in-variance test. We compare the algorithms in terms of the

empirical probabilities of false alarm PFA and misdetection

PMD, respectively, as well as the average run length of the

sequential test.

A. Simulation Setup

We generate a connected network with N = 30 sensors.

The x- and y-coordinates of each node are sampled from

a uniform distribution in the interval of (0, 1). We set the

maximal distance between two connected sensors to g = 0.6,

meaning that only nodes within this range can communicate

with each other and are considered neighbors. Furthermore, for

the shift-in-mean test we set σ2
n = 1 and µ = 1, to test between

two signals with a mean of −1 and 1, respectively, and choose

a noise contamination of ǫ = 0.3. For the change-in-variance

test, σ2
n = 1, σ2

x = 8, ǫ = 0.1. The tuning constants of the

M-estimator are chosen as cHuber = 1.5 and cTukey = 2.5.

We assume the required probabilities of false alarm α and

misdetection β to be equal and ranging from 10−3 to 10−2.

We conduct 10,000 Monte Carlo runs under each hypothesis.

B. Simulation results

1) Shift-in-mean test: The simulation results for the shift-

in-mean test are depicted in Figure 1. Figures 1(a) and

1(b) show the empirical probability of false alarm PFA and

misdetection PMD, respectively, over the required probabilities

α and β. We observe that all robust algorithms meet the

required error probabilities with PFA = PMD = 0, while the

standard CISPRT, which uses a sample mean to estimate the

innovations term, is non-robust against outliers and therefore

unable to meet the requirements. In contrast, all robust algo-

rithms meet and even exceed the required error probabilities

with PFA = PMD = 0. Note that the results for both error

probabilities are almost identical. This is due to the fact that

the shift-in-mean test is a symmetric problem and, hence,

outliers affect both hypotheses equally.
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Fig. 1: Simulation results of the shift-in-mean test using the

CISPRT, Median-CISPRT, M-CISPRT, Myriad-CISPRT, and

R-CISPRT.

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 2107



0 0.002 0.004 0.006 0.008 0.01
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

Required probability of false alarm α

E
m

p
ir

ic
al

p
ro

b
ab

il
it

y
o

f
fa

ls
e

al
ar

m
P

F
A

CISPRT

Median-CISPRT

Myriad-CISPRT

R-CISPRT

M-CISPRT (Tukey)

M-CISPRT (Huber)

boundary line

(a) Empirical probability of false alarm PFA

0 0.002 0.004 0.006 0.008 0.01
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

 

 

Required probability of misdetection β

E
m

p
ir

ic
al

p
ro

b
ab

il
it

y
o

f
m

is
d

et
ec

ti
o

n
P

M
D

CISPRT

Median-CISPRT

Myriad-CISPRT

R-CISPRT

M-CISPRT (Tukey)

M-CISPRT (Huber)

boundary line

(b) Empirical probability of misdetection PMD

0 0.002 0.004 0.006 0.008 0.01
0

5

10

15

20

25

30

35

40

45

 

 

Required error probability α

A
v
er

ag
e

ru
n

le
n

g
th

CISPRT

Median-CISPRT

Myriad-CISPRT

R-CISPRT

M-CISPRT (Tukey)

M-CISPRT (Huber)

(c) Average run length under H0

0 0.002 0.004 0.006 0.008 0.01
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

 

 

Required probability of misdetection β

A
v
er

ag
e

ru
n

le
n

g
th CISPRT

Median-CISPRT

Myriad-CISPRT

R-CISPRT

M-CISPRT (Tukey)

M-CISPRT (Huber)

(d) Average run length under H1

Fig. 2: Simulation results of the change-in-variance test using the CISPRT, the Median-CISPRT, M-CISPRT, Myriad-CISPRT,

and the R-CISPRT.

Figure 1(c) shows the average run length of the sequential

test over the required error probabilities α and β. The result

is identical for both hypotheses. We observe that the standard

CISPRT is the fastest algorithm. However, since it is not able

to meet the required error probabilities, it is of no use in a non-

Gaussian environment. The three proposed robust algorithms,

however, are robust against outliers and only slightly slower

than the CISPRT. Clearly, the best performing algorithm in

the shift-in-mean test is the M-CISPRT with Huber’s score

function, which only needs half a time step more on average

than the non-robust CISPRT.

While the R-CISPRT introduced in [5] is also robust against

outliers, it is considerably slower than either of the proposed

three algorithms. This is most likely due to the fact that this

approach is derived using the least-favorable distributions,

i.e., considering the worst-case for the scenario under test.

Since we sample from a non-Gaussian distribution that is

not necessarily the least-favorable one, it makes sense that

the proposed algorithms, which try to remove or downweight

occuring outliers, outperform the approach that is optimized

for the worst case.

2) Change-in-variance test: The simulation results for the

change-in-variance test are depicted in Figure 2. Figures 2(a)

and 2(b) show the empirical probability of false alarm PFA
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and PMD, respectively. In contrast to the shift-in-mean test,

the results are quite different. While all robust algorithms

again meet and even exceed the required error probabilities, the

CISPRT fails completely under H0 with PFA = 1. However,

it works under the alternative with PMD = 0. This is due

to the fact that the change-in-variance test is an asymmetric

problem, meaning that outliers have a different effect on

each hypothesis. When testing between a small and a large

variance of an incoming signal, outliers, i.e., extremely large

values, will only have a bad effect under the null hypothesis.

Under H1 they will even be beneficial in correctly accepting

the alternative. Hence, no detection will be missed, but false

alarms are unavoidable when relying on a non-robust detector.

For the same reason, the average run length shown in

Figures 2(c) and 2(d) is different under H0 and H1. While

the non-robust CISPRT always finishes the test after approx-

imately 1 sample, the robust algorithms need a considerably

larger amount of samples to make a decision under the null

hypothesis than under the alternative since the appearance of

outliers makes the test easier in the latter case. Under H1,

the M-CISPRT with Huber’s score function is again the best

performing algorithm, which makes sense, since this side of

the asymmetric problem is similar to the shift-in-mean test in

terms of the effect of outliers. Under H0, however, both the M-

CISPRT with Tukey’s score function and the Myriad-CISPRT

prevail, and the Median-CISPRT comes in second.

Similar to the shift-in-mean test, the R-CISPRT – while

robust – is considerably slower than our proposed algorithms

since it is optimized for the worst-case scenario.

VI. CONCLUSION

In this paper we proposed an approach for robustifying

the CISPRT via robust estimators. To this end we devel-

oped three robust distributed sequential detectors, namely, the

Median-CISPRT, the M-CISPRT, and the Myriad-CISPRT.

We evaluated their performance in a shift-in-mean as well as

a change-in-variance test in terms of the average run length

and the empirical error probabilities. Furthermore, we showed

that they outperform the R-CISPRT, which is based on the

least-favorable distributions.
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