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Abstract—The recovery of periodic signals from their noisy
single channel mixtures has made wide use of the adaptive line
enhancer (ALE). The ALE, however, is not designed for detection
of two- (2-D) or three-dimensional (3-D) periodic signals such as
tremor in an unconstrained hand motion. An ALE which can
perform restoration of 3-D periodic signals is therefore required
for such purposes. These signals may not exhibit periodicity in a
single dimension. To address and solve this problem a quaternion
adaptive line enhancer (QALE) is introduced in this paper for
the first time which exploits the quaternion least mean square
(QLMS) algorithm for the detection of 3-D (extendable to 4-D)
periodic signals.

Index Terms—ALE, quaternion adaptive line enhancer, QLMS,
quaternion shift.

I. INTRODUCTION

Many signals and time series, which are often noisy in
nature, contain periodic or cyclostationary components. As
an example, most of the signals recorded from the human
body are periodic, quasiperiodic, or cyclostationary (i.e. some
order statistics of the data are periodic) [1]. These signals are
often buried in noise or mixed with other periodic or aperiodic
signals. Extraction of such cyclic signal components is very
important for monitoring the status of patients undergoing
medical treatment.

The adaptive line enhancer (ALE) was introduced by
Widrow et al. [2] and widely used for the separation of a
generally weak sinusoid, periodic, or narrowband signal from
strong broad-band noise. This has been a classical problem in
the field of nonlinear and adaptive signal processing.

The general block diagram of an ALE is depicted in Fig. 1.
The input s(n) is assumed to be the sum of a narrow-band
signal x(n) and a broad-band signal v(n) which is considered
as noise. e(n) is the error signal between s(n) and the esti-
mated signal x̂(n). The vector of prediction filter parameters
w are iteratively and automatically adjusted based on e(n) so
that the statistical mean squared error (MSE), E[e2(n)], where
E[·] stands for statistical expectation, is minimized.

Fig. 1: A single channel (one dimensional traditional) adaptive line
enhancer.

The ALE operates by virtue of the difference between the
correlation lengths of x(n) and v(n). The correlation length
refers to the interval within which the correlation between the
first and last sample is not zero and therefore, shows the system
order. The delay parameter ∆ should be chosen larger than
the correlation length of v(n), but smaller than the correlation
length of x(n). In this case, it is possible for w to make a
∆-step ahead prediction of x(n−∆) based on the present and
past samples of s(n−∆). However, w is not able to predict
v(n) from the knowledge about present and past samples of
v(n−∆). As a result, after the parameters of w have converged
toward their optimal values, e(n) is approximately equal to
v(n) and the ALE output x̂(n) is approximately equal to x(n).

The ALE has applications in many areas such as commu-
nications, sound, vibration, and biomedical signal processing.
There are, however, limitations for the traditional ALE, since
it is designed to be used for single channel (one dimensional)
signals and its application is limited to narrowband signals
and Gaussian noise. As such, it is not applicable in scenarios
where the signal is in three dimensional (3-D) space, the noise
is not white Gaussian, or the artefact signals have temporally
correlated components. Sanei et al. [3] proposed an ALE
which incorporates singular spectrum analysis to alleviate the
problems of one dimensional (1-D) ALE. In this paper, the
focus is therefore, on developing a new ALE which works for
denoising and recovery of 3-D periodic signals.

In the case where the periodic data is 3-D, such as the one in
Fig. 2, successive application of 1-D ALE for each dimension
in 3-D space is not effective in general for the recovery of such
signals from their noisy versions as the signal may not exhibit
periodicity in any one of the three dimensions. This can be
seen in Fig. 2, where none of the components of the 3-D signal
in any one of the three dimensions is periodic. The proposed
algorithm in this article therefore, aims at recovering a 3-D
periodic wave by developing an ALE which can operate in 3-
D. For this purpose a quaternion based ALE (QALE) algorithm
is proposed. Often, least mean square (LMS) algorithm is used
for solving the conventional ALE problem [2]. In order to
develop the QALE, an effective quaternion-based LMS is used.

Recently, a class of quaternion least mean square (QLMS)
stochastic gradient adaptive filtering algorithms has been de-
signed in [4] for filtering of hyper-complex processes. Such
a system can be applied to both circular and noncircular
signals and therefore, exploits the correlation between the real
and complex components of a quaternion-valued signal. Their
analysis has shown that for circular data in the quaternion
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Fig. 2: The noise free 3-D sinusoid; (left) its 3-D illustration and
(right) its variation along each axis.

(Hamiltonian, H) domain the pseudocovariance E{xxT } does
not disappear as it does in the complex domain C. Further,
it has been shown that operating in the quaternion domain
allows for the fusion of heterogenous data sources. Inclusion
of pseudocovariance however, has proved to be very effective
in improving the performance of QLMS.

Quaternions, used for more than 150 years (conceived by
Hamilton in 1843), can be regarded as a noncommutative
extension of complex numbers, and comprise of at most four
variables [5]. A quaternion variable q ∈ H which has a
real/scalar part R(q) (here, denoted by subscript a), and a
vector part I(q) comprising of three imaginary parts (denoted
by subscripts b, c, and d), can be expressed as

q = [R(q), I(q)] = [qa,q] ∈ H
= [qa, (qb, qc, qd)]

= qa + ıqb + qc + κqd {qa, qb, qc, qd} ∈ R
(1)

where ı, , and κ are the orthogonal unit vectors and have
the properties ı = κ, κ = ı, κı = , and ıκ = ı2 =
2 = κ2 = −1. Quaternions have found applications in
computer graphics, for the modelling of three-dimensional (3-
D) rotations [6], in robotics [7], molecular modelling [8],
processing colour images [9], hyper-complex digital filters
[10], texture segmentation [11], source separation [12], wa-
termarking [13], spectrum estimation [14] quaternion singular
value decomposition and in the MUSIC algorithm to process
polarized waves [15], [16], quaternion least squares [8], [17],
and quaternion singular spectrum analysis [18]. In [4] the
formulation for a quaternion LMS adaptive filtering has also
been provided and used for the processing of quaternion valued
signals.

Just as important as many of the above applications,
detection and extraction of periodic 3-D signals buried in
noise, artefacts, and undesired periodic or aperiodic signals is
required for many applications. Detection of weak underwater
tone signals based on line spectrum extraction and tremor
signals of a patient suffering from stroke or Parkinsons, from
their 3-D trajectory of hand movement, are some examples of
such applications.

II. METHODOLOGY

The conventional LMS algorithm minimises E[ee∗] where
e(n) = d(n)−wT (n)x(n), d(n) is the desired or target signal,
x(n) is the input signal, w(n) is the vector of filter parameters,
and (·)∗, (·)H , and (·)T refer to conjugate, conjugate transpose,
and transpose operations for a vector respectively.

In an ALE however, d(n) = x(n − ∆) as mentioned in
Section I and x(n) is a periodic noisy signal where the 1-D
time delay ∆ = mP , P is the signal period and m is an
integer. When the noise is white, m can be as small as unity.

In 3-D applications there is need for a quaternion delay
along the signal base-line trajectory. This is naturally a shift
equivalent to an integer multiple of the signal cycle period in
the 3-D space.

In our application the quaternion input signal is defined as

xq(n) = xa(n) + ıxb(n) + xc(n) + κxd(n) (2)

where xa(n), xb(n), xc(n), and xd(n) are the four signals in
four orthogonal directions. For a 3-D case, an example can be
the hand movement in the x-y-z coordinates.

In the augmented quaternion LMS proposed in [4] similar
to original LMS, we have:

J(n) = e(n)e(n)∗ = e2a(n) + e2b(n) + e2c(n) + e2d(n) (3)

In order for the QLMS to cater for general quaternion pro-
cesses, a quaternion-valued semi-widely linear model can be
employed [19];

y(n) = wT (n)x(n) + gT (n)xH(n) (4)

This model incorporates the information contained in both the
covariance, Cxx = E[xxH ], and pseudocovariance, Pxx =
E[xxT ]. According to [4], using QLMS the update equations
for w and g are obtained as:

w(n+ 1) = w(n) + µ[2e(n)x∗(n)− x∗(n)e∗(n)] (5)

g(n+ 1) = g(n) + µ[2e(n)x(n)− x(n)e∗(n)] (6)

In order to have a unified and combined update equation,
as often considered for augmented quaternion signals and
systems, the above two filters are augmented to form

ha(n) = [wT (n) gT (n)]T (7)

In that case the weight update of the QLMS is expressed as

ha(n+ 1) = ha(n) + µ[2ea(n)xa∗(n)− xa∗(n)ea∗(n)] (8)

where the augmented error is given by

ea(n) = d(n)− haT (n)xa(n) (9)

where xa(n) = [xT (n) xH(n)]T . In the proposed 3-D
quaternion-based ALE (QALE), depicted in Fig. 3,

xa(n) = xa
s(n) + va(n) (10)

is the augmented input noisy signal and the target signal for
the QLMS filter, is a quaternion shift of the input signal i.e.

d(n) = ra(n) = xa(n−∆q) (11)
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Fig. 3: Block diagram of the proposed QALE.

vice versa. Therefore, the output ya(n) = x̂a
s(n) is an

estimation of the noise free signal xa
s(n).

Although in some cases such a 3-D shift, ∆q , for at least
one signal cycle is practically easy, such as those for a
prescribed hand movement trajectory in an action research
arm test (ARAT) [20], in theory, it may pose a challenging
problem. An effective option, used in this study, is to apply
quaternion singular spectrum analysis (QSSA) introduced in
[18] and use the signal obtained from the first eigentriple
(i.e. the eigenvalue and eigenvectors of the corresponding
augmented quaternion singular value decomposition within the
QSSA operation) as the 3-D baseline. In those rare cases where
the dominant eigentriple is related to the periodic signal, a
couple of identical eigenvalues can be seen in the eigenspace
of the SSA. In such cases the trajectory eigentriple will be
that corresponding to the 3rd eigenvalue. Given such smooth
trajectory the points (xpi, ypi, zpi), i = 1, . . . , N , where N
is the signal segment length, in one segment, say p, can
be translated (shifted) to the points (xfi, yfi, zfi) in another
segment, say f , in the 3-D space. More importantly, a direction
should be associated with each segment sample to be aligned
with a similar sample of the other segment during the 3-D
shift process. For low noise signals this can be achieved by
incorporating the x-y-z values. At the presence of high level
noise there will be ambiguity in the sample directions too. A
complete solution to this problem however, is under research
and will be the agenda of another paper.

III. EXPERIMENT

The performance of QALE was assessed for the synthetic
signal shown in Fig. 4. This signal is constructed by adding
white Gaussian 3-D noise to the signal in Fig. 2. Evidently, it
is very difficult to realise the periodic behaviour of the data
in 3-D from this figure as the noise severly perturbs the 3-D
shape of the signal. The following equations can be used to
create such signals.

x = sin(αn)cos(6βn) + Γx(n)

y = sin(αn)sin(6βn) + Γy(n)

z = γ[n+ sin(
n

3
)] + Γz(n)

where Γ(n) is the white Gaussian noise with different noise
levels. The constants α, β, and γ can be changed; in this
application they are set respectively to 3, 0.02, and 1. The
QLMS target signal is also another later segment of the same
signal with an interval ∆q (equivalent to an integer number of
signal cycles) which has been shifted forward along the 3-D

Fig. 4: The noisy 3-D sinusoid; (left) its 3-D illustration and (right)
its variation along each axis; SNR=5 dB.

Fig. 5: Shifted, along the 3-D signal trajectory, noisy 3-D sinusoid of
Fig. 4; (left) its 3-D illustration and (right) its variation along each
axis; SNR=5 dB.

direction (Fig. 5). It is evident that with the added noise the
signal in 3-D is not recognisable.

The proposed QALE algorithm was applied to the above
signal for different noise levels. The results are depicted in
Fig. 6. In our attempt, we considered that the baseline of
movement and the sample directions were known a priori, so,
the 3-D shift could be performed accurately. It is also seen
that the noise effect in obscuring the signals is more obvious
in 3-D cases as compared to 1-D cases. In some cases where
the periodicity is along two dimensions, applying a simple
post processing method to the signal in the third dimension
can significantly reduce this effect. In our experiment, for
example, the z component of the signal can be post processed
to enhance the 3-D signal. This is however, out of the scope
of this letter. It is also clear that by applying the traditional
ALE successively to each of the x, y, and z dimensions, no
conclusive result is expected. This is because, in general, the
3-D periodic signals are not expected to be periodic in each
of the above directions. However, In the above example for
the sake of comparison, we applied ALE to the signal in y
direction and depicted the results in Fig. 7. By decreasing the
signal-to-noise ratio (SNR), the performance of the algorithm
deteriorates. The performance was evaluated in terms of mean
square error (MSE) defined as:

MSE =
‖xa

s(n)− x̂a
s(n)‖2

‖xa
s(n)‖2

(12)
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Fig. 6: The result of applying the proposed QALE to the 3-D signal
of Fig. 4 and its comparison with the noise-free signals of Fig. 2;
(left) 3-D illustration and (right) variation along each axis.

Fig. 7: The result of applying the traditional ALE to the simulated
signals in y direction; (a) noisy input, (b) the shifted signal, and (c)
the ALE output.

where ‖ · ‖2 refers to Euclidean norm and each term can be
expanded to sum square of its quaternion components, e.g.

‖xa
s(n)‖2 = ‖xa

sa(n)‖2+‖xa
sb

(n)‖2+‖xa
sc(n)‖2+‖xa

sd
(n)‖2

(13)
The calculated MSE for both ALE and QALE are illustrated
in Fig. 8.

IV. CONCLUSION

A novel quaternion-based ALE algorithm has been de-
veloped to cater for the recovery of 3-D periodic signals
from their noisy counterparts. The results demonstrate that the
proposed QALE is effective for 3-D signls as the ALE is for
1-D signals. In the design of proposed QALE we used the
QLMS algorithm. For rigour, the performance of the algorithm
has been evaluated in terms of MSE and compared with that
of the original ALE bearing in mind that the traditional 1-D
ALE is not meant to work for the 3-D data.

There are many applications in nature for this technique.
One example can be the recovery of hand tremor moving
freely in an unconstrained 3-D motion. This can happen in
patients suffering from stroke, Parkinsons, or alcoholic pa-
tients. Another example can be the detection of carrier signals
in a polarised communication noisy waveform. More research
however, has to be undertaken to enable the quaternion shift

for real world applications of QALE where the 3-D trajectory
is not fully known.

Fig. 8: Comparison between the performances of ALE and QALE.
For ALE, we considered the signal changes in the y direction only.
This performance therefore varies depending on which direction and
how many cycles the signal is shifted through that direction.
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