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Abstract—This paper presents a method for estimating the
number, as well as the activity periods of spatially distributed
sound sources using an uncalibrated microphone array. This
methodology is applied for the purposes of speaker diarization.
In general, speaker diarization has difficulty with: 1) estimating
the number of sound sources (speakers), and 2) activity detection
of multiple sound sources including overlap of utterances. Several
microphone array based techniques have already tackled these
challenges. However, existing methods mainly assume that the
steering vectors for the microphone array are calibrated in
advance to identify sound sources, which is difficult to satisfy
when ad-hoc or flexible microphone arrays are used. Thus our
approach estimates the number of sound sources blindly in two
steps. First, Time Delay of Arrival (TDOA) of the observed signal
is clustered. Second, the sound source activity is detected by
clustering the long-term spatial spectrum using the TDOA based
steering vector for each cluster. The validity of the algorithm is
confirmed by both synthesized signals and a real-world flexible
microphone array application.

I. INTRODUCTION

As the number of speech-based home assistant devices
increases, technologies estimating “who is talking when”
(known technically as speaker diarization) in indoor envi-
ronments has become more important. Speaker diarization
research mainly tackles the simultaneous estimation of speaker
segmentation (voice activity detection) and clustering (number
of speaker estimation). Beside monaural signal based methods
[1], [2], microphone array technologies tackles this by intro-
ducing spatial information about the speakers. However, most
of the existing methods assume that the microphone location
is given to estimate the direction of arrival of speakers [3]-
[6]. Some methods using Time Difference Of Arrival (TDOA)
have been proposed [7]-[9], which do not assume the known
microphone location. These methods propose using HMM for
speaker segmentation and clustering, as well as hierarchical
agglomerative clustering using spacial information. However,
the methods have difficulty with overlapping speech [7] and
estimating the number of speakers deterministically [8], [9].

Estimating the number of speakers has also been studied
separately from speaker diarization. However, these methods
mainly assume that: the microphone location is known [10]-
[12], the number of microphones is more than the number of
sound sources (namely underdetermined) [13]-[15], and the
sound follows the cylindrical harmonics model [16]. Voice
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activity detection is also studied separately, but the microphone
array based methods assume: the space for detection is limited
[17]-[19], microphone location is known [20]-[23], and there
is only a single target source [24]-[26].

Recently, microphone array technologies that do not assume
known microphone locations and synchronous microphones,
so-called “ad-hoc microphone arrays and acoustic sensor
networks”, have been introduced [27]. Flexible microphone
arrays [28] does not assume known microphone locations but
synchronous microphones, which is useful since the normal
microphone array device is often limited in physical size
due to its portability, while flexible microphone arrays can
be extended depending on the use case. Especially in the
case with a robot-embedded microphone array, it is difficult
to measure the location of microphones because a robot-
embedded microphone array is attached to a complex robot
surface. Moreover, the free space assumption in the above
mentioned methods is not always satisfied since the sound
arriving at a robot includes robot- and room-acoustics due to
the diffraction and reflection properties of robot bodies and
reverberant rooms [29].

This paper investigates the estimation of Number of Sound
Sources (NSS) and Sound Source Activity Periods (SSAP)
for multiple sound sources accepting overlaps using an un-
calibrated microphone array which does not assume known
microphone locations. We assume that: non-overlapped sounds
are dominant compared to overlapped sounds considering
conversation situations, sound sources are spatially distributed
and do not dramatically move (for instance speakers sit on
the same chairs with accepting the change of body/face
orientations), the microphone array does not move, and mi-
crophones are synchronized. To estimate NSS, we first obtain
TDOAs of framed observed signals based on Generalized
Cross Correlation with Phase Transform (GCC-PHAT) [30].
Second, we propose to select major clusters of the TDOAs
based on affinity propagation [31], which determines: the
number of clusters (meaning NSS), TDOAs that belong to each
cluster, and the exemplar of each cluster (similar to the cluster
centroid). The affinity propagation is a clustering which does
not require explicit number of clusters and can cluster outliers
caused by noise, reverberation, and sound overlaps. Thus, it
can robustly distinguish true sources and outliers. After the
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Fig. 1. Overview of the Proposed Algorithm

major cluster selection for true sources, we can estimate NSS
more accurately compared to conventional hierarchical ag-
glomerative clustering. For estimating SSAP, we first propose
to compute the representative steering vector of each cluster
using TDOA of the exemplar sample. Second, we propose
to cluster the spatial spectrum histogram of Multiple Signal
Classification (MUSIC) [32] using the steering vector, which
is able to detect SSAP of overlapped sounds.

II. PROPOSED METHOD

Fig. 1 shows the overview of the method. This section
briefly describes each block.

A. Estimation of Number of Sound Sources

1) TDOA Estimation by GCC-PHAT: Let X,,(w, f) denote
the input acoustic signal of the m-th channel (1 < m < M)
after Short Time Fourier Transform (STFT) at the f-th frame,
where M is the number of microphones. We assume that the
frame is sufficiently long with a sufficiently short period of
interval. Let X (w, f) = [X1(w, f), ..., Xar(w, f)]T denotes
Xm(w, f) of all channels. First X (w, f) is averaged over F
frames as follows in order to make the spectrum robust against
instant noise:

!
_
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X (w, ) X(w, f+1). (1)
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=]

This paper simply defines TDOA as the TDOA between the
first channel X (w, f) and others !. Finally, TDOA of the m-th
channel in the f-th frame 7,,,(f) is computed as follows:

- “i X (w, )X (W, f)
Tm(f) - argf_nax/wL |X1(w7f)X:;z(wvf>‘

where ()* is a complex conjugate transpose operator, and wy,
and wy are the minimum and maximum frequency considered
in TDOA estimation, and X,,(w, f) is X (w, f) of the m-th
channel. The range of 7 is defined as —D,,,/c < 7 < D,,/c,
where D,,, and c are the maximum array size candidate (which
can be rough estimate) and the speed of sound, respectively.
Finally, the TDOA vector for the clustering is obtained as
7(f) = [1=2(f), ..., Tar(f)]T whose size is M — 1.

?Tdw , (2)

*

lAlthough X1 (w, f) is being used as the reference channel, the selection
is studied previously, for example in [9]. Therefore, the proposed method can
be extended.

7(f) tends to be noisy when there is no spatially salient
sound source. Thus, we simply eliminate silent frames based
on the following thresholding before computing TDOA.

1
wyg —wr +1

Z ||X*(W’f)X(w>f>||2a 3

wW=wrp,

E(f) =

and the frames satisfying E(f) < Tg are rejected from the
GCC-PHAT computation, where T is a threshold, which is
described in Fig. 1-B).

2) Affinity Propagation Based TDOA Clustering: We clus-
ter the estimated TDOAs 7(f) to estimate NSS. This paper
assumes speakers are spatially distributed, so TDOAs from
the same speaker gather in a sufficiently small space. The
difficulties for the sound source clustering are twofold: the
number of clusters is unknown, and the data points are noisy
due to noise, reverberation, and sound overlaps, etc. To tackle
these difficulties, we introduce affinity propagation [31], which
is a type of clustering that does not need to set the number
of clusters. The method first defines similarity S(i, j) between
i-th and j-th data points and initializes candidate exemplars
and updates two parameters, responsibility and availability,
of each exemplar alternately and iteratively to decide which
point should be an exemplar. Finally, we can obtain: the
number of clusters C, the exemplar sample for each cluster
7 (1 <4 < C), the number of members in each cluster Np;
(1 <4 < C), and the set of cluster members 7(;) (1 <i < C).
In general, the advantages of the method are: the number of
clusters is determined automatically, the performance is robust
against initial states, and the similarity does not have to be
symmetric and satisfy triangle inequality.

For the affinity propagation of TDOAsS, we use the similarity
definition as a negative squared euclidean distance of two data
points as follows:

S(i.g) = =llr@) =TI - @

The set of non-clustered 7( f), described in Fig. 1-C), becomes
C clusters with exemplar samples like Fig. 1-D).

3) Major Cluster Selection: After the clustering, some
small clusters are organized due to the noise, reverberation,
and sound overlaps. Based on the assumption mentioned in
Section I, the cluster size between true sources and noise has
a sufficiently salient gap. Therefore, we reject small clusters
based on thresholding of the ratio of cluster size. For this
thresholding, first, the clusters are sorted based on the number
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of members N (1 <i < C) in the ascending order (Fig. 1-
E)), and too small clusters satisfying Nj;; < Tl is eliminated,
which makes C' smaller to C. Ty is empirically derived as
Tx = 100. Then we compute the ratio of the neighboring
cluster size as follows:

—2<i<(), 5)

and the smallest ¢ that satisfies N[ ] > TR is derived as i Tr
is empirically derived as T = 1.5. Finally, the clusters whose
indices are i < i are rejected If N[Z] < Tk, all clusters are
selected. Finally, C —i+1 is the estimated NSS.

B. Estimation of Sound Source Activity Periods

1) Steering Vector Generation: Each selected major cluster
has the exemplar sample 7; (% < i < C’), which is the
representative TDOA of the i-th cluster. Let 7(; = [7(;j2, .-,
an )T denotes TDOA of all channels. Therefore the candidate
steering vector for the i-th cluster Ap;)(w) is described as

A[i] (w) = Lo 7ejb-)‘?[i]z\/[]T : ©)

where the phase difference of the first channel is defined as
zero since it is the TDOA between the same channels. In order
to avoid all elements to have negative phase difference, we
modified Eq. (6) to add D,,/c to the time difference, which
becomes as follows:

Apj(w) =

which is schematically described in Fig. 1-F).

2) Spatial Spectrum Computation by MUSIC: We used
MUSIC [32] to compute the spatial spectrum. We first compute
a correlation matrix of X (w, f) and take its Eigen value
decomposition. Let V(w, f) = [vi(w, f),...,vpm(w, f)] de-
notes the Eigen vectors. Finally, the spatial spectrum is com-
puted as:

[eij, ejw%[i]Q

[ejw DC’” , ejw(‘f'[i]z-i- Dcm ) , ej‘”("i[i]M""

T ()

1 i”: | Ay (W) Ay (W)
wH —wr + 1 w=wr, Zm L+1 |A* ( )vm(w,f)|’
(®)
where L is the number of sound sources. Here we defined
L =1 since the purpose is mainly to detect one sound source.
The example of the sequence of Py (f) is shown in Fig. 1-G).
3) Estimation of SSAP by Spectrum Histogram: The his-
togram based SSAP estimation is inspired by long-term signal
variability with adaptive thresholding [33]. We take the long-
term histogram of Pp;(f) for each 7 after elimination of invalid
frames when Py (f) = 0. The threshold T'p(;) is determined
for each ¢ based on k-means clustering of the histogram with
k = 2, meaning “active” and “inactive” clusters. Tp[; is
obtained as the minimum value of Py(f) that is classified
as “active” cluster, namely higher value of minimum values
of 2 clusters. The intuitive diagram is shown in Fig. 1-H).
The general limitation of k-means is that it has to tune the
number of clusters, but in this case the number of clusters
is automatically determined as two. Finally, SSAP of the
i-th sound source is determined by the frames satisfying
Py (f) = Tpp;) (Fig. 1-H)).

P[i](f):
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Fig. 2. Robot-embedded Microphone Array Setup and Layouts

III. EVALUATION

This section shows two types of evaluations as follows:

o Estimation accuracy of NSS and SSAP to see the effec-
tiveness of the proposed algorithm using synthetic data
using recorded directional white noise (Section III-A)

o Application to normal conversation using a flexible mi-
crophone array (Section III-B)

Both evaluations used a normal room whose reverberation
time and size were 0.2s (RT20) and 4mx7m, respectively.
The signal was sampled with 16kHz and 16bits while frame
size and shift length were 512 and 160 samples, respectively.
F =10 in Eq. (1). wz, = 500Hz and wy = 2800Hz.

A. Estimation Accuracy of NSS and SSAP

This section evaluates the estimation accuracy of NSS and
SSAP with the variation of number of microphones, number
of sound sources/locations, and overlapping periods. We used
a robot-embedded microphone array shown in Fig. 2 where the
free space assumption does not hold. The robot has two 8ch
circular microphone arrays (in total 16ch), and we selected
5 types of microphone layouts as M;(1 < ¢ < 5), shown
in Fig. 2, so as to see the robustness against the change
of the number of microphones. We considered 10 types of
sound source layouts as S;(1 < i < 10), shown in Table I.
We first recorded 4.0s white noise on the same horizontal
plane as the mirophone array from each direction with the
distance of 1.0m and synthesized each white noise one by one
with the following three kinds of intervals: 1) 0.5s interval,
Non-overlapped shown in Table II, 2) 0.8s [20%] overlap,
Overlapped shown in Table III, 3) O; = ix0.8s [ix20%]
overlap (0 <7 < 5), shown in Table IV.

We evaluated the following criteria: NSS, Recall Rate (RR)
and Precision Rate (PR) of SSAP estimation. RR and PR are
defined as follows:

# of correct frames # of correct frames

RR= —F—— PR =
# of active frames

The results are shown in Table II for the non-overlapped
case and Table III for the overlapped case. The NSS which
was correctly estimated is shown as bold. For more than 2
microphones, NSS was correctly estimated. In the case of Ms,
NSS was not correctly estimated when S7, So, Sy, and Sg due
to the spatial ambiguity, so-called front and back confusion.
In most of the cases, RR and PR are around 90% or more,
which validates the proposed algorithm. NSS was correctly

# of frames estimated as active
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TABLE I
10 TYPES OF SOUND SOURCE LAYOUT (S1,- -, S10)

l [ 51 [S2[Ss[Sa[Ss]56[S7[S5s]S50[50]
Tnitial [deg] 00O JO]JOJ]O]O]JO0O]O 0
Tnterval [deg] || 30 | 45 | 30 | 60 | 45 | 90 | 60 | 120 | 90 | 130
Final [deg] |[ 360 | 360 | 180 | 360 | 180 | 360 | 180 | 360 | 180 | 360

NSS 28|76 544713 3 2
TABLE 11
EVALUATION FOR NON-OVERLAPPED SOUNDS. NOTATION : NSS[RR/PR]
[ I M, [ My [ Ms [ My [ Ms ]

51 ][ 12 [1.00/0.89] [ 12 [1.00/0.89] | 12 [1.00/0.76] | 12 [1.00/0.71] | 4 [1.00/0.15]

S5 || 8 11.00/0.89] | 8 [1.00/0.89] | 8 [1.00/0.89] | 8 [1.00/0.34] | 5 [1.00/0.18]

S3 || 7 [1.00/0.89] | 7 [1.00/0.89] | 7 [1.00/0.89] | 7 [1.00/0.89] |7 [1.00/0.22]

S41 || 6 [1.00/0.89] | 6 [1.00/0.89] | 6 [1.00/0.89] | 6 [1.00/0.89] | 4 [1.00/0.27]

S5 || 5 [1.00/0.89] | 5 [1.00/0.89] | 5 [1.00/0.89] | 5 [1.00/0.64] | 5 [1.00/0.25]

Se 471.00/0.89] | 4 [1.00/0.89] | 4 [1.00/0.89] | 4 [1.00/0.89] | 2 [1.00/0.30]

S7 || 4 11.00/0.89] | 4 [1.00/0.89] | 4 [1.00/0.89] | 4 [1.00/0.89] | 4 [1.00/0.35]

Ss || 3 11.00/0.89] | 3 [1.00/0.89] | 3 [1.00/0.89] | 3 [1.00/0.89] | 3 [1.00/0.53]

So || 311.00/0.89] | 3 [1.00/0.89] | 3 [1.00/0.89] | 3 [1.00/0.89] | 3 [1.00/0.53]

S10 || 2 [1.00/0.89] | 2 [1.00/0.89] | 2 [1.00/0.89] | 2 [1.00/0.89] | 2 [1.00/0.86]
TABLE III
EVALUATION OF OVERLAPPED SOUNDS. NOTATION : NSS[RR/PR]
LT M T My [ My [ My [ M5 ]

51 [[ 12 10.92/0.95] [ 12 0.90/0.97] | 12 [0.89/0.89] | 12 [0.85/0.71] [ 5 [1.00/0.11]

S> || 8710.90/0.97] | 810.90/0.97] | 8 10.88/0.97] | 8 [0.90/0.65] | 5 [1.00/0.17]

S5 || 7 [0.91/0.97] | 7 [0.90/0.96] | 7 [0.89/0.96] | 7 [0.88/0.97] | 7 [0.82/0.46]

S1 || 610.90/0.97] | 6 [0.90/0.97] | 6 [0.90/0.97] | 6 [0.87/0.97] | 3 [0.91/0.55]

S5 || 510.90/0.96] | 5 [0.91/0.97] | 5 [0.89/0.97] | 5 [0.92/0.62] | 5 [1.00/0.26]

Se || 4[0.91/0.96] | 4 [0.90/0.96] | 4 [0.87/0.96] | 4 [0.91/0.65] | 2 [0.78/0.76]

S7 || 410.92/0.96] | 4 [0.92/0.96] | 4 [0.92/0.96] | 4 [0.89/0.96] | 4 [0.88/0.88]

Ss || 310.92/0.95] | 3 [0.92/0.95] | 3 [0.88/0.95] | 3 [0.90/0.93] | 3 [0.99/0.59]

So || 310.88/0.95] | 30.92/0.96] | 3 [0.92/0.95] | 3 [0.94/0.93] | 3 [0.92/0.58]

S10 || 2 [0.93/0.94] | 210.93/0.94] | 2 10.94/0.90] | 2 [0.93/0.94] [ 210.99/0.91]
TABLE IV

EVALUATION OF OVERLAP PERIODS. NOTATION : NSS[RR/PR]

L T M T M, [ My [ My [ M ]
Og [ 7 [0.96/0.92] [ 7 [0.95/0.93] | 7 [0.94/0.93] | 7 [0.94/0.94] | 7 [0.85/0.43]
O7 [ 7 10.9170.97] [ 7 10.90/0.96] | 7 [0.89/0.96] | 7 [0.88/0.97] | 7 [0.82/0.46]
O || 710.91/0.94] |7 [0.78/0.95] | 7 [0.79/0.96] | 7 [0.85/0.84] | 7 [0.75/0.46]
O3 |[710.88/0.84] [ 7 [0.79/0.83] | 7 [0.85/0.94] | 7 [0.86/0.75] | 7 [0.71/0.48]
O34 || 810.86/0.90] | 8 [0.97/0.917 | 3 [0.96/0.917 | 3 [0.94/0.91] | 7 [0.70/0.52]
O5 [[4710.97/0.75] | 2 [0.96/0.91] | 3 [0.94/0.93] | 3 [0.94/0.55] | 4 [0.94/0.69]

estimated even when the number of microphones is less than
the number of sound sources. Since the sound sources are
not simultaneous, this is not an underdetermined condition,
however this shows the method effectively utilizes temporal
sparseness to handle high number of sound sources. Table IV
shows the result with the variation of overlapped periods when
Ss. As shown in the table, the proposed algorithm could
estimate NSS up to 60% overlap. The robustness improvement
for more overlapped sounds is the future work.

Fig. 3 shows a result of each proposed step using an
overlapped sounds when S3, M, and Os. Fig. 3-B) shows
the sequence of 7(f), and rejected frames based on E(f)
are shown as white. Fig. 3-C) shows Np; (1 < i < C), and
the clusters above the red line are the selected major clusters.
Fig. 3-D) shows the sequence of 7; (i <i< C‘), which does
not accept overlapped sounds. Fig. 3-E) shows the sequence
of Pyj(f). Fig. 3-F) shows the histogram of P (f) of all
frames and TP[ﬂ’ which shows k-means clustering successfully
determined the threshold. Fig. 3-G) shows SSAP estimation
results using T'p[;, which accepts overlapped sounds and
improves SSAP estimation.

B. Flexible Microphone Array Application

The proposed method was applied to the flexible micro-
phone array shown in Fig. 4 where we randomly put each
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microphone on a circular table. As shown in Fig. 4, there were
4 speakers seated around the table (approximately 1.5m from
the array with different heights), and the azimuth difference
between two speakers was approximately 90 degrees. Fig. 5
shows the result of 30s free conversation. Compared to Fig. 3,
Fig. 5 changed Fig. 5-F) from the histogram to the hand
labeled SSAP. Fig. 5-G) shows considerable similarity with
Fig. 5-F), and RR = 0.59, PR = 0.81. We recorded 15 minutes
conversation and divided it into 30 of 30s conversation,
and the average and standard deviation of NSS estimation
is 3.77 £ 0.62, which shows the validity of the proposed
algorithm with natural conversation.

IV. CONCLUSION

This paper investigated the estimation of NSS and SSAP
using an uncalibrated microphone array. We proposed the
major cluster selection of affinity propagation of TDOA to es-
timate NSS robust against noise, reverberation, sound overlaps,
etc. To estimate SSAP of overlapped sounds, we proposed to
cluster the long-term spatial spectrum into active and inactive
using the steering vector estimated by representative TDOA.
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The evaluation showed: 1) NSS was correctly estimated when
the microphone apparatus did not have spatial ambiguity and
the overlap is sufficiently short, 2) SSAP were estimated with
high performance for both synthesized and real-world data,
which proved the effectiveness of the proposed algorithm.

We have a variety of future works planned. As mentioned
above, NSS estimation had some error when overlap period
was long, so robustness against overlap period should be
improved. Additionally, the extension of the proposed method
to speaker diarization by introducing sound source separation
and automatic speech recognition should be investigated.

REFERENCES

[1] S. E. Tranter et al, “An overview of automatic speaker diarization
systems,” in IEEE TASLP, vol. 14, no. 5, pp. 1557-1565, 2006.

[2] M. H. Moattar and M. M. Homayounpour, “A review on speaker
diarization systems and approaches,” in Speech Communication, vol.
54, no. 10, pp. 1065-1103, 2012.

[3] K. Ishiguro et al., “Probabilistic Speaker Diarization With Bag-of-Words
Representations of Speaker Angle Information,” in IEEE TASLP, vol. 20,
no. 2, pp. 447-460, 2012.

[4] X. Anguera et al., “Speaker diarization for multi-party meetings using
acoustic fusion,” in Proc. of IEEE ASRU, pp. 426431, 2005.

[5] J. Schmalenstroeer and R. Haeb-Umbach, “Online Diarization of
Streaming Audio-Visual Data for Smart Environments,” in /EEE J-STSP,
vol. 4, no. 5, pp. 845-856, 2010.

[6] D. Korchagin, “Audio spatio-temporal fingerprints for cloudless real-
time hands-free diarization on mobile devices,” in Proc. of HSCMA, pp.
25-30, 2011.

[7]1 D. Vijayasenan et al., “An Information Theoretic Combination of MFCC
and TDOA Features for Speaker Diarization,” in IEEE TASLP, vol. 19,
no. 2, pp. 431438, 2011.

[8] M. Zelenak et al., “Simultaneous Speech Detection With Spatial Fea-
tures for Speaker Diarization,” in JEEE TASLP, vol. 20, no. 2, pp. 436—
446, 2012.

[9]
[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

(21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]
[32]

[33]

ISBN 978-0-9928626-7-1 © EURASIP 2017 2506

X. Anguera et al., “Acoustic Beamforming for Speaker Diarization of
Meetings,” in IEEE TASLP, vol. 15, no. 7, pp. 2011-2022, 2007.

B. Loesch and B. Yang, “Source number estimation and clustering for
underdetermined blind source separation,” in Proc. of INVAENC, 2008.

Jwu-Sheng Hu and Chia-Hsin Yang, “Estimation of Sound Source
Number and Directions under a Multisource Reverberant Environment,”
in EURASIP Journal on Advances in Signal Processing, vol. 2010, no.
63, 2010.

Radu Balan, “Estimator for Number of Sources Using Minimum
Description Length Criterion for Blind Sparse Source Mixtures,” in
Independent Component Analysis and Signal Separation, vol. 4666, pp.
333-340, 2007.

K. Yamamoto et al., “Estimation of the number of sound sources using
support vector machines and its application to sound source separation,”
in Proc. of IEEE ICASSP, vol. 5, pp. 485-488, 2003.

H. Sawada et al., “Estimating the number of sources using independent
component analysis,” in Acoust. Sci. & Tech Letter, vol. 5, pp. 450-452,
2005.

V. Choqueuse et al., “Blind detection of the number of communication
signals under spatially correlated noise by ICA and K-S tests,” in Proc.
of IEEE ICASSP, pp. 2397-2400, 2008.

H. Teutsch and W. Kellerman, “Estimation of the number of wideband
sources in an acoustic wave field using eigen-beam processing for
circular apertures,” in IEEE WASPAA, pp. 110-113, 2005.

X. Wang et al., “A reverberation robust target speech detection method
using dual-microphone in distant-talking scene,” in Speech Communica-
tion, vol. 72, pp. 47-58, 2015.

J. H. Choi and J. H. Chang, “Dual-Microphone Voice Activity Detection
Technique Based on Two-Step Power Level Difference Ratio,” in IEEE
TASLP, vol. 22, no. 6, pp. 1069-1081, 2014.

J. Park et al., “Dual Microphone Voice Activity Detection Exploiting
Interchannel Time and Level Differences,” in IEEE Signal Processing
Letters, vol. 23, no. 10, pp. 1335-1339, 2016.

E. Nemer and A. Pandey, “A dual-microphone subband-based Voice
Activity Detector using higher-order cumulants,” in Proc. of IEEE
ICASSP, pp. 5954-5958, 2014.

K. Ishizuka et al., “Speech Activity Detection for Multi-Party Conver-
sation Analyses Based on Likelihood Ratio Test on Spatial Magnitude,”
in IEEE TASLP, vol. 18, no. 6, pp. 1354-1365, 2010.

I. Potamitis and E. Fishler, “Speech activity detection and enhancement
of a moving speaker based on the wideband generalized likelihood ratio
and microphone arrays,” in J. Acoust. Soc. Amer., vol. 116, pp. 2406—
2415, 2004.

A. Davis et al., “A subband space constrained beamformer incorporating
voice activity detection,” in Proc. of IEEE ICASSP, vol. 3, pp.65-68,
2005.

M. W. Hoffman et al., “GSC-based spatial voice activity detection for
enhanced speech coding in the presence of competing speech,” in IEEE
TSAP, vol. 9, no. 2, pp. 175-179, 2001.

Y. Hioka and N. Hamada, “Voice activity detection with array signal
processing in the wavelet domain,” in /EICE Trans. Fundamentals, vol.
E86-A, pp. 2802-2811, 2003.

L. Armani et al., “Use of a CSP-based voice activity detector for distant-
talking ASR,” in Proc. of Interspeech, pp. 501-504, 2003.

A. Bertrand, “Applications and trends in wireless acoustic sensor net-
works: A signal processing perspective,” in Proc. of 18th IEEE SCVT,
pp. 1-6, 2011.

H. Saruwatari et al., “Flexible microphone array based on multichannel
nonnegative matrix factorization and statistical signal estimation, ~ in
Proc. of International Congress on Acoustics, pp. 1-10, 2016.

K. Nakamura et al., S. Ambrose and K. Nakadai, “On-the-spot cali-
bration of microphone array Transfer Functions for robot audition,” in
Proc. of IEEE ICRA, pp. 3354-3359, 2015.

C. H. Knapp and G. C. Carter, “The generalized correlation method for
estimation of time delay,” in IEEE Trans. on ASSP, vol. 24, no. 4, pp.
320-327, 1976.

B. J. Frey and D. Dueck, “Clustering by Passing Messages Between
Data Points,” in Science, no. 315, pp. 972-976, 2007.

R. Schmidt, “Multiple emitter location and signal parameter estimation”,
in IEEE Trans. Ant. Prop., vol. 34, no. 3, pp. 276-280, 1986.

P Ghosh et al., “Robust voice activity detection using long-term signal
variability,” in IEEE TASLP, vol. 19, no. 3, pp. 600-613, 2011.



