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Abstract—Clustering of multimodal data according to their
information content is considered in this paper. Statistical cor-
relations present in data that contain similar information are
exploited to perform the clustering task. Specifically, multiset
canonical correlation analysis is equipped with norm-one regu-
larization mechanisms to identify clusters within different types
of data that share the same information content. A pertinent
minimization formulation is put forth, while block coordinate
descent is employed to derive a batch clustering algorithm which
achieves better clustering performance than existing alternatives.
Distributed implementations are also considered to cluster spa-
tially clustered data utilizing the alternating direction method of
multipliers. Relying on subgradient descent, an online clustering
approach is derived which substantially lowers computational
complexity compared to the batch approaches. Numerical tests
demonstrate that the proposed schemes outperform existing
alternatives.

I. INTRODUCTION

In many applications such as sensor networks [6], genomic
data integration [12] and remote sensing [15], different types
of data are acquired corresponding to multiple sensing modes.
Several techniques have been put forth for processing multi-
modal data including estimation [11], and regression [9]. Our
focus here is clustering multimodal data according to their
information content. Existing clustering schemes [2], [3], [13],
[18] rely on pre-specified distance metrics to cluster unimodal
data (single data type) according to their similarity in terms
of magnitude.

The goal here is to cluster data according to the informa-
tion they contain about some underlying sources/objects of
interest. Statistical correlation between multimodal data that
contain information about the same source of interest will be
exploited. We build on multiset canonical correlation analysis
(M-CCA) [8], [10] that is capable of uncovering maximally
correlated features from multiple sets of data. Applications
of M-CCA vary from information retrieval from different
languages [16], to large scale biometric structure prediction
[14], to remote sensing [15]. The novel regularized M-CCA
framework proposed here generalizes our work in [5] that
performs clustering of only two different data types. We equip
M-CCA with norm-one regularization terms, which are capa-
ble to identify which multimodal data entries are correlated
and cluster them in the same group. Block coordinate descent
[1] will be utilized to obtain a batch algorithm that uses
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all the available data to perform multimodal clustering (Sec.
IIT). Starting from the norm-one regularized multiset CCA
formulation the alternating direction method of multipliers
is employed to locally estimate global quantities and enable
sensors to perform distributed clustering (Sec. IV). Trading-off
clustering accuracy for computational complexity, an online
multimodal clustering approach is put forth, employing sub-
gradient descent techniques (Sec. V). Besides the significant
computational savings, numerical tests demonstrate the small
performance loss of online clustering with respect to the
batch approach, as well as its better performance compared
to existing clustering schemes (Sec. VI).

II. PROBLEM STATEMENT AND PRELIMINARIES

We consider a setting in which different kind of sensors
measure different types of observations and the acquired mul-
timodal sensor data contain information about g statistically
uncorrelated stationary sources, which are denoted by s;(7) for
i=1,---,q while 7 corresponds to time. Let A™ represent
a set containing the mth type of sensors and the number of
sensors in A™ is equal to p,,. Also, let .A;” denote a sensor
with index j in set A™, for j = 1,--- ,pp,. It is assumed
that each sensor senses at most one source which in practice
happens when only one source is contained within the sensing
range of each sensor. The measurements acquired by sensor
A'J’” adhere to the generic (non)linear data model

(D

where w,, ;(7) is zero-mean white sensing noise and
flm,j) € {1, - ,q} corresponds to the index of the source
sensed by sensor A”". Further, h, ;(-) denotes a random scalar
mapping, which equals to zero when sensor A7" does not
contain any information about the sources present in the field
(placed far away).

Stacking the measurements from all the sensors belong-
ing to A™ in vector X, € RP=*1 we have X, r =
[Tm.1(T), @m2(T), +  Tnp,, (T)]T. Let S denote the subset
of entries in {x,, - }2/_, that contain information about source
s5:(7), while S° is defined as the subset of entries that only
have information about noise. The goal of this paper is to
find the ¢ + 1 sets, namely {S?}{_,, clustering in that way
data according to their source information. Toward this end, a
proper multiset canonical correlation analysis (M-CCA) [10]
framework equipped with norm-one regularization is derived.

T i (T) = hanj (S f(m,5) (T)) + Wi 5 (7),

2368



2017 25th European Signal Processing Conference (EUSIPCO)

After applying the ADMM framework and subgradient de-
scent, the distributed and online algorithms are developed.
Given M > 2 data sets, {x1,} € RP*! {x,,} €
RP2x1 ... dxp .} € RPXD with 7 = 1,--- T, M-CCA
searches for ¢ x p,, matrices D,, so that the following cost
is minimized

{Dun}picy = arg ming, 5, 1/CQT) 3270 Y0y Y

HDW( - um) - Dn(Xn,‘r - un)”% 2)
s.to DmEng =Iform=1,---,M,

Xm,T

where I € R?*? is the identity matrix, while the sample-
average estimates of the expectation and covariance of x,, »
are represented by u,, and 3, respectwely, ie., u, =

-1 ZT | Xm,r and X, :=T7! ZT L (Xmr — W) (X —
um) .

Each row of the estimated vectors {Dm(xmﬁ —u,) M,
i.e., the ith row, can be viewed as an estimate of source signal
s;(7), which is hidden in the measurements X1 ;, - -+ , Xar, 7
Since only a subset of entries of x,, , contain information
about source s;(7), the goal is to find a matrix D,,, whose
corresponding entries in the ith row of D,, can be nonzero
and the rest of the entries are zero. Thus, the sparsity structure
of D,,, can be utilized to reveal which sensors sense the same
source. Ideally, the support (nonzero entries indices) of each
row of D,, will coincide with the indices in set S¢. Hence,
in order to identify which entries of {x,,.}M_; acquire
information about the same sources and perform multimodal
data clustering according to their information content, we
introduce a norm-one regularized M-CCA framework.

Notation: Operators || - || and || - || correspond to the
Frobenius norm and norm-one, respectively. A(i,:) and A(:
,7) (a(k)) denote the ith row and the jth column of matrix
A (the kth element of vector a). Further, [M],. and M(b,:)
refer to the bth row of matrix M. Also, sgn(v) represents the
entry-wise sign operator applied to vector v.

III. BATCH MULTIMODAL CLUSTERING

In order to identify the source-based clusters of entries in
{%Xm.-}M_,, we combine the M-CCA formulation in (2) with
norm-one penalization. Thus, the sparsity induced matrices
{D,,}™_, can be obtained by minimizing the following
sparse M-CCA formulation

~ . T M
{Dm}%:l = arg minp .. ,DMl/(2T> : 2721 Zm:l n#£m
”D (Xm,r —um) — Dy, (Xn-,T - un)H% + 523,;:1 DX,

5+ o X A D (1) 1, 3)

The sparsity-controlling coefficients A, , > 0 control the
number of zero entries in row D,,(p,:). Also, the middle
term in (3) is used to impose the uncorrelated structure in
the source estimates D, (X, - — Up,). Next, block coordinate
descent (BCD) techniques are applied to derive an iterative
solution. Specifically, within each coordinate descent cycle,
we minimize (3) with respect to (w.r.t.) one element of D,,,
while fixing the remaining entries in D,,, and all the elements
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in matrices {D,, }* ntm
t-th coordinate cycle, given {D% 11
via

to their most recent updates. In the
we update D!,

n=1,n#m>

R ) 1 71
D}, = arg ming, DS DF, — 13+ 5 57 i
D (Xm,r — ) — ﬁz_l(xnﬁr - un)”%
+2 p=1Am D, 3) 1 )
To avoid fourth-order polynomial terms in the cost function
when minimizing (4) w.r.t. a single entry of D,,, the second
D,, in the term £||D,,2,, DL —T1||2 is fixed to its up-to-date
estimate. Under this approximation, D!, can be obtained by

R . 1 S Nt
D}, =arg minp, =37, . [DwXm — DKl (5)

+ 5HDmEm(f)£;1)T 1%+ 22:1 Am,pl[Dm(p, 1)1
where Xm = [Xm,l — U, Xm,2 — Um0 5 X, T — um} S
RPm*T and X, := [Xn1—UpyXp2 —Up, - ,XpT — Uy €
RP-*T form =1,--- ,m—1,m+1,---, M.

Utilizing the coordinate descent iterations, the problem in
(5) will be split into ¢ - p,, scalar minimization subproblems,
each of which focuses on a corresponding entry in D,,. In
detail, the problem in (5) is minimized w.r.t. one entry of
D,,, i.e., D,,(a,b), while fixing the matrices {D,, }2 ntme
as well as the gp,, — 1 remaining entries of D,, to their most
recent updates. Then, the updates D! (a,b) fora =1,--- ,q
and b=1,--- ,py,, can be achieved by solving the following
minimization problem

D}, (a,b) = arg ming 3", ., [l —d - 8L}

+ Ama - ld] + [0 — d -0l lI3, ©6)
where
apt = 705D Xyl — S0 lfyéb m ' (a,0)
X (6,2), By =T X (b, ),

Pm
P =" — > DLNa,0) - [Bh - (DY),
0=1,0%b

and 77y = e"?[2,, (DL ]y (7)

Since the problem in (6) is a scalar sparse regression problem,
the minimizer can be obtained as (details can be found in [17])

Dfn(aa b) = sgn((p;”bt)TqZth) 3)
t t
X |max | 0 (pZ"b )Tq:‘nb _ Ama
) it ot )
lags 13 2[lazy 113
Wheg\i . pml’jt = [a;rgl’)l’t, e a;nl’)mil’t aami)erl’t’ cee
m m,t | __
7¢ } andq@b T [Igabﬂ. 'ngabanab}T'

In summa.ry, the batch M-CCA framework involves the
following three steps:
Step 1: Initialize ]59n randomly for m =1,--- | M.
Step 2: For the ¢-th coordinate descent cycle, update D! (a, b)
via(8) fora=1,---,¢,b=1,--- ,ppand m=1,--- , M.

2369



2017 25th European Signal Processing Conference (EUSIPCO)

Step 3: If the M-CCA cost reduction is larger than a pre-
specified threshold go back to Step 2, otherwise return D,,, =
D! form =1,---,M, and exit.

m

IVv.

When sensors are spatially scattered distributed techniques
are essential to enable localized clustering of the acquired
multimodal data. Thus, a distributed version of the centralized
BM-CCA scheme is developed, abbreviated as BDM-CCA un-
der the assumptions that: a;) sensor .A;-” is responsible for up-
dating the jth column of D,,, and it only has access to the jth
element of data vector x,, » for 7 =1,--- , T ay) each sensor
can only exchange information with its single-hop neighboring
sensors; and a3) there exists at least one sensor in A% which

DISTRIBUTED IMPLEMENTATION

communicates with sensor .Am fori=1,---, M and i # m.
Considering that D, X,,, = >.2™ D, (:,i)X (i,:), then (3)
can be reformulated as

1 M
{Dm m=1 — aIg mlnD1 DMﬁ Zm:l Zn:l,n;ﬁm

|| Pm m(' i)X7rL(Z ) - ?;1 Dn(:ai)Xn(ia

)%
Pm Pm

e Z I ZD (D Do c58)Xon (35)"

- I”F + Zm:l 2 =1 Am. oD (p, )11 ©)

Combing BCD with the ADMM framework, the problem in
(9) can be solved in a distributed fashion. To be specific, BCD
is utilized to split (9) into E%zl Pm subproblems, each of
which focuses on updating one submatrix of D,,, namely the
jth column of D,,,, i.e., D,,(:, j), by sensor A;»”. At the same
time, ADMM will be employed to estimate the global value

P Do (:,) X, (4, 2) in a distributed way. Toward this end,
during the ¢th coordinate descent, sensor A7" updates ljfn(:, J)
by minimizing the following cost w.r.t. variable d

1

7 D |0 D (Ko () — 002, DG

~ _ 1 N
- Df‘rjl(:?j)xm(j? :) - dxm(j7 )”% + EHT[( f;nl Df’n_l(:vi
Xon(iy:) = D )Xo (4, 2) + dXon (4, 2)) (10)
o DL G )Xo (4,) 7] = 1% 4 2002 Ampld(p)].

Next, ADMM is applied to estimate the global quantity

P DE-1(:, )X, (i, ;) which involves information from all
sensors in A™. ADMM will enable a distributed estimation
of the aforementioned quantity via local updating recursions
that will be obtained by minimizing the following constrained
minimization problem

U, ’?’”1 (Lo

i i e N

j = arg minUt Pth e )Xo (4,

s.to Uy, ;=07 (11)

that formulates Zp m DI, i) X, (iy:) as the optimal so-
lution, namely Um j» of a separable minimization problem
that is amenable to distributed implementation. Note that the
optimization Variables Ul . € R™*T correspond to a local

m,J
estimate of 3 7" Dy, (:,4)X,,(i,:) at sensor A7, and N*
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7i)xn(iv :)

12

denotes the set of neighboring sensors of sensor A7 which
belong to A™. The task of solving (11) by sensor .A;” boils
down to the updating recursions (details of the procedure can
be found in [5])

Vm’t(,‘{) = V;”],t(f-@ 1) + O.5c(fan (k) — th 5 (F))
Ufﬂ J(’% + 1) (2 + 26|Nm‘1)71[2me'trn 1('7 )Xm(.]7 :)

=Y (VI R) = VI () 4 UL () + <O ()
j’EN]?n

where V"™} (k) correspond to Lagrange multipliers locally
updated at sensor A;” making sure that the consensus con-
straint U}, . = U’ .,/ is satisfied. Further, index + denotes
the ADMM 1terat10n index and ¢ > 0 corresponds to a step-
size. A finite number of iterations, saying K, are carried
out to estimate the quantity 7™ D1(:, )X, (i, :). To this
end, the local estimate U?, (K ) will be denoted as U?, -
These estimates locally obtamed across the different sensors
are substituted in the minimization problem in (10) to obtain
the following local formulation

Ufw( )+Dt 1(

m,j_Dinl(:vj)7 (

arg mlndl/T Zn;ﬁm HUm,J

7)Xm(j,)
—dX,n (. )12 + el 1/T((O )

+dXo (5, ) (U5, )71 = TIE + 32021 Ampld(p)] (12)
in which, I:T:L i (n) corresponds to the local estimate of
Pr DE1(: )X, (4, ) at sensor A’ (,,y» Which corresponds

to one of the neighboring sensor of sensor A7 in set A".
Notice that, the quantities Un i () in (12) can be obtained at

sensor A7 by communicating with his single hop neighbors
j'(n) in set A", while the rest of the quantities are available
locally at sensor .A;-" (cf. assumption a3). To minimize the cost
in (12) coordinate descent is employed to divide the problem
in (12) into ¢ subproblems each of which focuses on one entry
of D,,(:,7), which can be solved using a similar procedure
as the one described in Sec. III to obtain recursions similar to
(8).

To summarize BDM-CCA algorithm, at each coordinate de-
scent cycle, every sensor, i.e., A7, relying on communication
only with its neighboring sensors in sets A", completes the
following two steps: 1) carries out X ADMM iterations to find
the estlmateUfn > and 2) solves the minimization problem in
(12) by splitting it into ¢ scalar minimization subtasks.

V. ONLINE PROCESSING

To reduce computational complexity and enable processing
of a large volume of data, we design an online framework
(abbreviated OM-CCA) that entails regularized M-CCA to
process efficiently large data sets. Online clustering is pertinent
for a setting where data are constantly acquired, making
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necessary real-time processing. Starting from the batch cost
in (3), we build the online formulation

o 1 y
T \M _ : M M
{Dm m=1 — g mlnDl,--- D 5 Zm:l n=1,n#m

“(Xm,r —5,) = Dy - (Xp,r — ﬁ;)H% + Zn]\le ZZ:l
Ampr D)1 +€Xmy D3y, - DL 13 (13)

D,

which emphasizes only to the present data at time instant 7,
AT

while 07, = 137 xpy and B, = 77130 (X —
a7,)(xm¢ — 7,)7. Note that the quantities @7, and 3,
can be updated in an online recursive fashion that does not
require storage of all the data acquired so far. To be specific,
a, = TT_lﬁ;;l + %xmﬁ and a similar updating formula
can be derived for ﬁ]; Further, time-decreasing Ay, - is
introduced to induce entry-wise sparsity in D, (p, :).

To facilitate applicability of block coordinate descent, the
problem in (13) will be split into M subproblems, each of
which updates D,,, while fixing the matrices {Dn}nj\il,n;ﬁm
to their latest updates. Further, subgradient descent [4] is
employed to estimate ]f)fn at time instant 7 according to the

updating rule

D}, =D} "~ - VD), (14)
where ¢, > 0 represents the step-size used in the subgradient
descent method, while V f(D7."!) denotes a sub-gradient of
(13) w.r.t. D,, evaluated at D7~!, which equals to

ViDL =200 Dt (ke —7,) — DY
—ar )T 44D 2]

ay,)] - (Xm,r m’ (ﬁT?l)T
Ama - sgn(D771(L0)

: (Xn;r - m

AT

- I) ! ]A);rnil ! Em +

Am.q - sgn(D]1 (g, 1))
VI. NUMERICAL TESTS

In this section, the clustering performance in terms of the
probability of correctly clustering the sensor data based on
their source content for BM-CCA, BDM-CCA, and OM-CCA
is tested and compared with i) the traditional M-CCA (TM-
CCA) which is obtained after applying {\,, , = O}f,vf’:ql’p:1
to BM-CCA, ii) an online clustering algorithm (OCE) in [7],
and iii) the traditional K-means algorithm [13].

The sparsity-controlling coefficients in BM-CCA are se-
lected using Alg. 1, where a dominant entry refers to the
entry with the largest absolute value with respect to the
other entries in the same column of a matrix. A step-size
of 4y = 0.01 is used to increase or decrease the sparsity-
controlling coefficients A, ,. Intuitively, Alg. 1 increases or
decreases the sparsity controlling coefficients such that at
most one dominant entry is present in each column of D,,,
depending on whether a sensor observes a source or not. If
a row of D,, does not have a dominant entry this implies
that all entries are small in magnitude, thus As are decreased
to introduce stronger entries. On the other hand if there are
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nonzero columns As are increased to identify noisy sensors
with no information.

During the implementation of OM-CCA, two types of pa-
rameters are involved, i.e., {c;}7_; and {Ampr Z{’,‘f,’f:y To
simplify the process of choosing those parameters, we assume
that ¢, = /7“1 and Ampr = /\9,1’p/7'“’2, where wi, wo, c°,
and A?n’ , are positive scalars. Also, we make the assumption
that w; = wy = 1.05 and w; = 0.51, while ¢ and A, |
are set to a sufficiently small value to ensure convergence of
OM-CCA. General selection rules that guarantee convergence
of OM-CCA are currently under investigation. Furthermore,
when testing the distributed BDM-CCA approach the number
of ADMM iterations, namely K, utilized to estimate pertinent
global quantities is set to K = 20.

Algorithm 1 Parameter Selection for BM-CCA

1: Initialize {/\m,p}ﬁf‘:ql,p:l to a small value (e.g., 0.1).
while(true)
2: Estimate {D,,}M_, via BM-CCA using {\, ,}":*

m=1,p=1"

If ¥m, and Vp, Din(p,:) has at least one dominant entry, and
Vm D,, has some all-zeros columns.
Break while.
else if
If D, (p,:) does not have a dominant entry, for m =1,--- |
Mand p=1,---,q
Amyp < )\m,p — (5)\.
end if .
If All the columns of D,, are non-zero columns for m =
1, , M
Am,p < Am,p+ 0y forp=1,--- q.
end if
3. Estimate {f)m}%zl via BM-CCA.
end if
end while

Two sources (¢ = 2) are generated that adhere to a first-
order autoregressive (AR) model. M = 4 types of sensors
are considered with {p,, = 15}1>_; sensors in each type. In
the testing settings considered: i) 4,5,6 and 5 sensors from
the each of the 4 different sensing types, respectively, are
randomly assigned to observe source s;(7); while ii) 5,5,3
and 4 sensors from the remaining sensors in each of the
different sets A™ for m = 1,2,3,4 are randomly assigned
to sense source s2(7). The remaining sensors in these four
sets are noninformative sensors and observe just noise. Both
a linear and nonlinear setting are considered for testing here.
In the linear data setting, the mapping function in (1) is set
as hn (5 ¢(m.;)(T)) = Sf(m,j)(7), while in the nonlinear data
setting, N j(S¢(m j)(T)) = (Sf(m.,;)(7))?, where ¢ is ran-
domly chosen from the set of values {1,1.1,1.3,1.4,1.5,1.6}.

We compare the clustering performance of BM-CCA,
BDM-CCA, OM-CCA, TM-CCA, OCE and K-means under
both linear and nonlinear data settings, denoted by (-) — L
and () — NL in Fig.1, respectively. Fig. 1 demonstrates
that the novel BM-CCA, BDM-CCA, and OM-CCA yield
better clustering performance as the number of data increases.
Interestingly, BM-CCA, BDM-CCA, and OM-CCA achieve
higher clustering probabilities than TM-CCA, K-means and
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Fig. 1. Probability of correct data clustering vs. number of data 7.

OCE. Comparing BM-CCA with TM-CCA, it can be seen that
introducing sparsity via norm-one regularization in M-CCA
significantly improves the clustering performance by 46%.
Also, it can be seen that the performance of the distributed
approach BDM-CCA is approaching the performance of BM-
CCA in both linear and nonlinear data settings, for a suffi-
ciently large number of ADMM iterations. In fact, as K goes
to infinity BDM-CCA will coincide with BM-CCA. Further,
the online approach OM-CCA for small number of data has
worse performance than the batch approaches BM-CCA and
BDM-CCA. Nonetheless, performance gradually improves and
reaches the batch performance as the number of data increases.

The real advantage of the OM-CCA is the computational
savings introduced by utilizing the online formulation in
(13). Specifically, for the linear setting we plot the average
running time among 100 independent Monte Carlo tests for
the algorithms BM-CCA, OM-CCA, OCE as well as K-means.
Table 1 depicts that the proposed OM-CCA runs (running
time is in seconds) as fast as K-means, while achieving
better clustering performance. Further, OM-CCA is much
more computationally efficient than BM-CCA by achieving
similar clustering performance in only 3 times less running
time on average compared to BM-CCA.

T BM-CCA OM-CCA OCE K-means

1000 32.6 14.95 13.86 10.91

2000 33 16.14 18.14 12.14

5000 85.2 20.6 30.08 16.9

10000 96.5 28.7 58.75 28.67
TABLE I

AVERAGE RUNNING TIME (SEC.) FOR CLUSTERING. RESULTS ARE
OBTAINED IN A 8GB RAM MACHINE WITH 3.0 GHZ PROCESSOR.

VII. CONCLUSION

The problem of clustering multimodal data according to
their information content was explored. Both a batch and on-
line implementation was considered, trading-off accuracy for
computational complexity. The effectiveness of the online ap-
proach was demonstrated in both linear and nonlinear settings.
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The alternating direction method of multipliers was utilized to
derive a distributed implementation of the centralized batch
approach enabling localized multimodal data clustering across
spatially scattered sensors. Numerical tests demonstrate the
potential of the novel approaches over existing alternatives,
while demonstrating the computational efficiency of the online
approach in terms of significantly smaller running time.
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