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Abstract—Bird sounds possess distinctive spectral structure
which may exhibit small shifts in spectrum depending on the bird
species and environmental conditions. In this paper, we propose
using convolutional recurrent neural networks on the task of
automated bird audio detection in real-life environments. In the
proposed method, convolutional layers extract high dimensional,
local frequency shift invariant features, while recurrent layers
capture longer term dependencies between the features extracted
from short time frames. This method achieves 88.5% Area Under
ROC Curve (AUC) score on the unseen evaluation data and
obtains the second place in the Bird Audio Detection challenge.

I. INTRODUCTION

Bird audio detection (BAD) is defined as identifying the
presence of bird sounds in a given audio recording. In many
conventional, remote wildlife-monitoring projects, the moni-
toring/detection process is not fully automated and requires
heavy manual labor to label the obtained data (e.g. by em-
ploying video or audio) [1], [2]. In certain cases such as
dense forests and low illumination, automated detection of
birds in wildlife can be more effective through their sounds
compared to visual cues. Besides, acoustic monitoring devices
can be easily deployed to cover wide ranges of land. This
indicates the need for automated BAD systems in various
aspects of biological monitoring. For instance, it can be
applied in the automatic monitoring of biodiversity, migration
patterns, and bird population densities [2]. BAD systems can
be augmented with another classifier to determine the species
of the detected birds [3]. Using an automated BAD system
as preprocessing/filtering step to determine the bird species
would be beneficial especially for remote acoustic monitoring
projects, where large amount of audio data is employed.

In this regard, the Bird Audio Detection challenge [4]
is organized with an objective to stimulate the research
on BAD systems which can work on real life bioacoustics
monitoring projects. The challenge provides three bird audio
datasets recorded in different acoustic environments. Two of
the datasets are provided with bird call annotations to be used
as development data. The final dataset consists of recordings
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from a different physical environment and it is employed as
the evaluation data. An extensive review on the recent work
on BAD can also be found in [4].

Bird sounds can be broadly categorized as vocal and
non-vocal sounds (such as bill clattering, and drumming of
woodpeckers) [S]. Since non-vocal bird sounds are harder to
associate with birds without any visual cues, the research on
BAD has been mostly focused on vocal sounds, as in this work.
Vocal sounds can be further categorized as bird calls and bird
songs. Bird calls are often short and serve a particular function
such as alarming or keeping the flock in contact. Bird songs are
typically longer and more complex than bird calls, and they of-
ten possess temporal structure which are melodious to human
ears [6]. Mating calls can be given as example to bird songs.
Vocal bird sounds include distinctive spectral content often
including harmonics. Alarm calls tend to be high-pitched with
rapid modulations (to get maximum attention), whereas lower
frequency calls are common in densely vegetated areas to
avoid signal degradation due to reverberation [7]. Furthermore,
depending on the environmental conditions (e.g. ambient noise
level, vegetation density) and the bird species, bird sounds may
exhibit certain local frequency shift variations [7]. Therefore,
a BAD system should be able to capture melodic cues in time
domain, and also should be robust to local frequency shifts.

Convolutional neural networks (CNN) are able to extract
higher level features that are invariant to local spectral and
temporal shifts. Recurrent neural networks (RNNs) are pow-
erful in learning the longer term temporal context in the audio
signals. In this work, we combine these two approaches in
a convolutional recurrent neural network (CRNN) and apply
it over spectral acoustic features for the BAD challenge.
This method consists of slight modification (temporal max-
pooling to obtain file-level estimation instead of frame-level
estimation) and hyperparameter fine-tuning for the challenge
over the CRNN proposed in [8], where it has provided state-
of-the-art results on various polyphonic sound event detection
and audio tagging tasks. Similar approaches combining CNNs
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Illustration of the CRNN architecture proposed for bird audio
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and RNNs have been presented recently in ASR [9] and music
classification [10].

The rest of the paper is organized as follows. The employed
acoustic features and the proposed CRNN for the BAD are
presented in Section II. Dataset settings, metrics, and method
configuration are reported in Section III. In Section IV are the
results and their discussion, followed by the conclusions in
Section V.

II. METHOD

The proposed method consists of two stages. In the first
stage, spectro-temporal features (spectrogram) are extracted
from the raw audio recordings to be used as the sound
representation. In the second stage, a CRNN is used to map the
acoustic features to a binary estimate of bird song presence.
CRNN parameters are obtained by supervised learning using
material that consists of acoustic features extracted from a
training database and the annotations of bird song activity.

A. Features

The utilized spectro-temporal features are log mel-band
energies, extracted from short frames. These features has been
shown to perform well in various audio tagging and sound
event detection tasks [11], [12], [8]. First, we obtained the
magnitude spectrum of the audio signals by using short-time
Fourier transform (STFT) over 40 ms audio frames of 50%
overlap, windowed with Hamming window. Duration of each
audio file in the challenge dataset is 10 seconds, resulting
to 500 frames for each file. Then, 40 log mel-band energy
features were extracted from the magnitude spectrum. Librosa
library [13] was used in the feature extraction process.

Keeping in mind that bird sounds are often contained in a
relatively small portion of the frequency range (mostly around
2-8 kHz), extracting features from that range seems like a good
approach. However, experiments with features from the whole
frequency range (from O Hz to Nyquist frequency of 22050
Hz) provided better results, and were therefore utilized in the
proposed method.

B. Convolutional recurrent neural networks

The CRNN proposed in this work, depicted in Figure 1,
consists of four parts:

1) convolutional layers with rectified linear unit (ReLU)
activations and non-overlapping pooling over frequency
axis

2) gated recurrent unit (GRU) [14] layers

3) a temporal max-pooling layer, and

4) asingle feedforward layer with a single unit and sigmoid
activation, as the classification layer.

A time-frequency representation of the data is fed to the
convolutional layers and the activations from the filters of the
last convolutional layer are stacked over the frequency axis
and fed to the first GRU layer. The extracted representations
over each time frame (from the last GRU layer) are used as
input to the temporal max-pooling layer. Output of the max-
pooling layer is employed as input to the classification layer.
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Output of the classification layer is treated as the bird audio
probability for the audio file. The aim of the network learning
is to get the estimated bird audio probabilities as close as to
their binary target outputs, where target output is 1 if any bird
sound is present in a given recording, and 0 vice versa.

The network is trained with back-propagation through time
using Adam optimizer [15] and binary cross-entropy as the
loss function. In order to reduce overfitting of the model, early
stopping was used to stop training if the validation data AUC
score did not improve for 50 epochs. For regularization, batch
normalization [16] was employed in convolutional layers and
dropout [17] with rate 0.25 was employed in convolutional
and recurrent layers. Keras deep learning library [18] has been
used to implement the network.

The proposed method differs from our other submission [19]
for the challenge (which came in fifth place) in the following
ways: we use a single set of acoustic features, smaller max
pool size in frequency domain and no max pooling in time
domain in convolutional layers, no maxout activation for the
classification layer, and the whole method consists of a single
branch with unidirectional GRU. In addition, considering the
auxiliary data augmentation and domain adaptation techniques
applied in [19], the proposed method is less complex and still
performs better in the given BAD challenge.

III. EVALUATION

A. Datasets

The Bird Audio Detection challenge [4] consists of a
development and an evaluation set. The development set
consists of freefieldl010 (field recordings gathered by the
'FreeSound project) and warblr (crowd-sourced recordings
collected through smartphone app) datasets, and the evaluation
set consists of chernobyl (collected by unattended recorders
in Chernobyl exclusion zone) dataset. Recordings in all the
datasets are around 10 seconds long, single channel, and
sampled at 44.1 kHz. The annotations for the recordings are
binary - bird calls present or absent. The total duration of the
available recordings is approximately 68 hours, which makes
the dataset a valuable source for detection methods that require
large amount of material. The statistics of the datasets are
presented in Table 1.

From the development set, we create five different splits
with 60% training, 20% validation, and 20% testing set
distribution. Each split has an equal distribution of birds call
present and absent, i.e. 60% of all the development data with
present bird call annotation is included in training data, and the
same is valid for absent bird call annotations. Different splits
are obtained by randomly shuffling the recordings list and re-
partitioning the data in given proportions. All development
set results are the average performance over the splits. For the
challenge submission, the CRNN is trained on single split of
80% training and 20% validation done on development set,
with equal distribution of classes.

Thttp://freesound.org/
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TABLE I
BIRD AUDIO DETECTION CHALLENGE [4] DATASET STATISTICS
Bird call
Dataset Present Absent Total
freefield1010 | 5755 1935 7690
warblr 1955 6045 8000
chernobyl ? ? 8620
Total 7710 + 72 7980 + ? 24310
TABLE II

FINAL HYPERPARAMETERS USED FOR THE EVALUATION BASED ON THE
VALIDATION RESULTS FROM THE HYPERPARAMETER GRID SEARCH.

Hyperparameters
# convolutional layers
Filter shape 5-by-5
pool size (5,2,2,2)
# recurrent layers 2
# feature maps/hidden units 96
# Parameters 806K

B. Evaluation Metric and Configuration

The BAD system output is evaluated from the receiver
operating characteristic (ROC) using the AUC measurement.
AUC is calculated from the area under the ROC curve that
shows the true positive rate against false positive rate over
various binarization threshold values.

In order to obtain the optimal hyperparameters for the given
task, we run a hyperparameter grid search over the validation
set. The grid search covers each of the combinations of the
following hyperparameter values: the number of CNN feature
maps/RNN hidden units (the same amount for both) {96, 256};
the number of recurrent layers {1, 2, 3}; and the number of
convolutional layers {1, 2, 3 ,4} with the following frequency
max pooling arrangements after each convolutional layer {(4),
(2,2),(4,2),8,5),(2,2,2),(5,4,2),(2,2,2,1),(5,2,2,2)}.
Here, the numbers denote the number of frequency bands at
each max pooling step; e.g., the configuration (5, 4, 2) pools
the original 40 bands to one band in three stages: 40 bands —
8 bands — 2 bands — 1 band. The final network configuration
is selected as the one with the best average validation set AUC
score over the five splits, and the resulting parameters are given
in Table II.

C. Baseline

In this work, we trained a CNN to be used as a baseline and
also to understand the benefit of using recurrent layers after
the convolutional layers. Based on the information given after
the challenge, most of the submissions also use CNN as their
classifier, and therefore it can be deemed as an appropriate
baseline for the proposed method. The optimal parameters
for CNN is found with a similar grid search as explained
in Section III-B, the only difference is that we replace the
recurrent layers with feedforward layers. Each feedforward
layer had shared weights between timesteps.

For comparison, we also provide the scores from the top
three submissions for the challenge. Both methods use CNN
as classifier (therefore labeled as CNN* [20] and CNN** [21]),
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Fig. 2. Log magnitude spectrum (top), log mel-band energies (middle) and a single filter output from first convolutional layer (bottom) for 000a3cad-ef99-
4e5e-9845.wav. Dashed boxes mark the components due to bird sounds, and solid boxes mark the components due to two people speaking.

they use mel spectrogram as input features, and they apply
frequency and time shift as data augmentation techniques.
Both methods apply pseudo-labeling (i.e. including the very
confident detections from the test set into training set) and
they further apply model ensembling over the networks.

IV. RESULTS AND DISCUSSION

AUC scores for the baseline CNN and the proposed CRNN
methods on development and evaluation sets are presented in
Table III. AUC for development set is obtained from the mean
test AUC of the five splits. Although the performance differ-
ence between CNN and CRNN is minimal for the development
data, CRNN performs significantly better for the evaluation
data. Considering that the evaluation data includes recordings
from different environmental and recording conditions than
the development data, one can say that CRNN does a better
job of generalizing over bird sounds in different conditions.
For both methods, the validation data AUC score reaches to
about 92% in the very first epoch and reaches its peak in
about 20 epochs. To compare with the other top submissions,
CNN* reaches 88.7% AUC and CNN** obtains 88.2% on the
evaluation data.

In order to provide some insight on the features and net-
work outputs, one of the recordings from the evaluation set
(namely 000a3cad-ef99-4e5e-9845.wav) has been specifically
investigated. The top panel represents the magnitude spectrum
(in log scale) for the recording, the middle panel shows the
normalized log mel band energies which are used as input for
the network, and the bottom panel represents the output from
one of the filters in the first convolutional layer before max-
pooling. When we compare the top two panels, we notice that
with log mel band energies, the frequency components due
to speech and bird sounds become very distinguishable. In
addition, by looking at the filter outputs in the bottom panel,
one can say that this filter has learned to react to the bird
sound components and mostly ignore the rest for the given

ISBN 978-0-9928626-7-1 © EURASIP 2017

TABLE III
AUC SCORES ON DEVELOPMENT AND EVALUATION SETS

Method
CNN CRNN
95.3 95.7
85.5 88.5

Dataset

Development
Evaluation

audio recording. The trained CRNN outputs a probability of
94.7% for a bird sound in this recording.

Since the amount of available material is quite large (about
68 hours), we did not further experiment on various data
augmentation techniques. For the challenge submission, we
experimented with a model ensemble method: 11 networks
with the same architecture and different initial random weights
(obtained by sampling from different random seeds) were
trained and the estimated probabilities from each network were
averaged to obtain the ensemble output. Although this method
improved the prior AUC results (calculated from a small
portion of the evaluation data) from 88.3 to §89.4, it performed
worse in the final results (88.5 vs. 88.2). The authors do not
have a clear reasoning for this contradiction, other than the
possibility that the prior evaluation data does not sufficiently
represent the data distribution of the whole evaluation dataset.

V. CONCLUSION

In this work, we propose using convolutional recurrent
neural networks for bird audio detection as a part of a
research challenge. The proposed method shows robustness
for the local frequency shifts and is able to utilize longer term
temporal information. Both of these features are essential for
a generalized, context independent BAD system. The method
achieves 88.5% AUC score and obtains the second place in
Bird Audio Detection challenge.
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