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Abstract—A novel feature extraction method for low-

dimensional signal representation is presented. The features are

useful for classification of non-stationary multi-component sig-

nals with stochastic variation in amplitudes and time-frequency

locations. Using a penalty function to suppress the Wigner-Ville

ambiguity function auto-terms, the proposed feature set is based

on the cross-term doppler- and lag profiles. The investigation

considers classification where strong similar components appear

in all signals and where the differences between classes are

related to weaker components. The approach is evaluated and

compared with established methods for simulated data and bird

song syllables of the great reed warbler. The results show that

the novel feature extraction method gives a better classification

than established methods used in bird song analysis.

I. INTRODUCTION

In biology, bird song analysis has been a large field for
several decades and methods based on spectrograms (sono-
grams) have been considered well suited for the comparison
of bird sounds. Characterizing patterns of songs from different
bird species are often sufficiently distinct, so that rather
straightforward features, e.g., time duration and frequency
bandwidth or cross-correlation of spectrograms (SPCC), often
yield satisfactory results, [1], [2]. Somewhat more sophisti-
cated is song analysis by means of e.g., pitch tracking [3],
dynamic time warping [4], mel-frequency cepstral coefficients
(MFCC) [5], and hidden Markov models [6].

The other main question in bird song research is the
automatic clustering of within-species syllables, e.g. for com-
puting repertoire size. This task often constitutes a much
more involved problem, and requires sufficiently sophisticated
methods able to not only capture subtle characteristic details
within a song but also to compare them with each other,
[7]. More simplistic methods, which may be suitable for
species differentiation, smooth out the differences that should
be detected and will fail in the within-species analysis. The
great reed warbler (GRW) is one example of a species with
songs of high complexity. Song analysis for the GRW has
so far mainly been conducted manually, by listening and
visually studying the syllable sonograms, [8], [9]. One of few
successful attempts to automatically cluster the syllables of the
GRW song has recently been made in [10], [11]. The features
used for clustering are the first pair of singular vectors of the
ambiguity function corresponding to a multitaper spectrogram.

Multitaper spectrograms have been used earlier for more ro-
bust estimation of features, [3], [7] and in a recent submission,
it was shown that the multitaper spectrogram is robust to jitters
in the component amplitudes and time-frequency locations,
[12].

However, to fully focus on the subtle characteristic details,
sophisticated methods that consider the small differences in
syllable structures are needed. It has been argued and shown
that the Wigner-Ville distribution should be better to use for
feature extraction than any traditionally smoothed distribution,
e.g., the spectrogram, [13]. The Wigner-Ville distribution
contains cross-terms, usually considered to be non-relevant and
therefore they should be suppressed. In this submission, we
focus on the explicit use of the Wigner-Ville ambiguity func-
tion cross-terms to capture and classify the subtle differences
in stochastic multi-component signals where strong similar
components appear in all signals and where the differences
between classes are related to weaker components.

II. THE AMBIGUITY PENALTY KERNEL

The Wigner-Ville distribution (WVD) is defined as

Wz(t, f) =

Z
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⌧
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where z(t) is the analytic correspondence to a real-valued
signal, obtained using the Hilbert transform. All integrals in
this paper range from �1 to 1. We study the two-component
signal z(t) = z1(t) + z2(t) for which the WVD is,

Wz(t, f) = Wz1(t, f) +Wz2(t, f) + 2<[Wz1,z2(t, f)], (2)

where Wz1(t, f) and Wz2(t, f), called auto-terms, are the
WVDs of z1(t) and z2(t) respectively and 2<[Wz1,z2(t, f)]

is referred to as the cross-term, where < represents the real
part. The ambiguity function (AF) is defined as
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where signal auto-terms always will be located at the centre,
independently of where they are located in the time-frequency
plane, and the cross-terms will always be located away from
the centre. The natural approach is to keep the terms located at
the centre and suppress the components away from the centre
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using an ambiguity kernel. However, to differ details when
signal components are of very different amplitudes, it could
be more beneficial to focus on the cross-terms. To illustrate,
we study the following simple example with a two-component
sinusoidal signal,

z(t) = z1(t) + z2(t) = c1e
�i2⇡f1t

+ c2e
�i2⇡f2t

, (4)

where the absolute value of the resulting AF is

|Az(⌫, ⌧)| = (c

2
1 + c

2
2)�(⌫) + . . .

c1c2(�(⌫ + (f1 � f2)) + �(⌫ � (f1 � f2)).

The first term with magnitude c

2
1 + c

2
2 corresponds to the

auto-terms and the remaining two terms with magnitude c1c2

correspond to the cross-term. Consider the case when one
component is much weaker than the other, c2 << c1. The
auto-term magnitude, c

2
1 + c

2
2 ⇡ c

2
1, i.e., the existence of

a weak amplitude component will be hidden by the large-
amplitude component, where on the other hand the cross-term
magnitudes c1c2 are using c1 as an amplification. If the auto-
terms are suppressed, the cross-terms will clearly show the
existence of the weak component as well as its frequency
location in relation to the large-amplitude component.

In this paper, the auto-term area is defined from the
ambiguity function contour of a single Gaussian function
w(t) = (�/⇡)

1/4
e

� �
2 t2 , where the corresponding component

length N

P
� is the number of samples defining the Gaussian

function above µ · (�/⇡)1/4. The corresponding AF is

Aw(⌫, ⌧) = e
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A ambiguity penalty (AP) kernel is defined as

�

P
(⌫, ⌧) = 0 for Aw(⌫, ⌧) > µ, (6)

and one for all other values. In this paper µ = 0.01. The
resulting absolute value of the ambiguity function using the
kernel �P

(⌫, ⌧) is

|AP
z (⌫, ⌧)| = |Az(⌫, ⌧) · �P

(⌫, ⌧)|. (7)

The resulting cross-term normalized doppler- and lag profiles
are defined as

MD(⌫) =

1
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Z
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where EA =

R R
|APz(⌫, ⌧)|d⌧d⌫. As measure of similarity

of the two syllables, s1 and s2, the inner product in Euclidean
space defined by,

dD(s1, s2) = hMs1
D ,M

s2
D i =

Z
M

s1
D (⌫)M

s2
D (⌫)d⌫, (9)

is used for the doppler profile vectors. The lag profile vectors
are combined similarly and the resulting two measures are
then averaged, i.e.,

d(s1, s2) = (dD(s1, s2) + dL(s1, s2))/2, (10)

so the best possible similarity is d(·, ·) = 1, where orthogonal
vectors indicate difference and d(·, ·) = 0 is the smallest
possible value.

III. EXAMPLE

A synthetic bird song syllable model is proposed as

x(n) =

JX

j=1

Aj cos(2⇡Fjn+ �) · wj(n� Tj), (11)

where n = 0 . . . N � 1, � 2 R(0, 2⇡). The function wj(n) =

e

�
↵j
2 n2

is a Gaussian window with ↵j chosen such that
N

g
j values are above µ. To exemplify and further explain

the advantages in the case of large amplitude differences
between components, three different syllables are simulated,
with N = 800, all N

g
j = 128 and the other parameters

according to Table I. The syllables s1C1 and s2C1 belong
to class 1 where s1C2 belongs to class 2.

Par. s1C1 s2C1 s1C2

A1/T1/F1 1 / 200 / 0.1 1 / 200 / 0.1 1 / 200 / 0.1

A2/T2/F2 0.1 / 500 / 0.1 0.1 / 500 / 0.1 0.1 / 200 / 0.2

TABLE I
THE PARAMETERS OF THE THREE SYLLABLES IN THE EXAMPLE.

The results of the similarity measure in Eq. (10), using the
proposed penalty kernel from Eq. (6) with N

P
� = N

g
j = 128,

are presented in Table II (WIGAP). To show the actual gain
of the penalty function, the corresponding measures, with
A

P
z (⌫, ⌧) replaced by just the Wigner-Ville ambiguity function

Az(⌫, ⌧) in Eq. (8), are computed, (WIGA). The WIGAP
shows a clear difference between the in-class measure (1.0)
and the between-class measures (0.038 and 0.041) where
WIGA indicates the same similarity between all syllables. The
reason is obvious, the high-amplitude components are at the
same time- and frequency location and the power of the small
component is about 1% of the large component, which will not
be visible as a difference in the time- and frequency profiles.

Meas. d(s1C1, s2C1) d(s1C1, s1C2) d(s2C1, s1C2)

Desired 1.0 0 0

WIGAP 1.0 0.038 0.041

WIGA 1.0 0.99 0.99

TABLE II
THE SIMILARITY MEASURES OF DIFFERENT COMBINATIONS OF THE

THREE SYLLABLES USING DIFFERENT METHODS.

IV. EVALUATION

In the evaluation, the signals are defined as in Eq. (11)
but with stochastic component parameters according to Ta-
ble III, for the two different classes. The amplitude, frequency-
and time locations are stochastic variables with Gaussian
distributions, Aj 2 N(A

0
j ,�Aj ), Fj 2 N(F

0
j ,�Fj ) and
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Tj 2 N(T

0
j ,�Tj ), where a number of 100 realizations is

generated in each class. The realizations are also disturbed
by white zero-mean Gaussian noise with variance �

2
N . The

signal-to-noise ratio (SNR) is defined by

SNR = 10log10
Pa

�

2
N

, (12)

where Pa is the average of the total energy of all 100
realizations. An example for SNR=12 dB is shown in Fig. 1a),
where one could note that the specified SNR-measure is not
fair for the low-amplitude components, which are the ones
carrying the differences between the two classes. The local
SNR, measured just for the low-amplitude component (red
color), is in this case 0 dB. The WIGAP and WIGA applied
in the previous example are also used here. For comparison,
the MFCC-method with 8 cepstral coefficients, a 128 sample
Hamming window and 90% overlap between frames, is inves-
tigated [14], as well as the SPCC method with 128 sample
Hanning window spectrograms. Additionally, the multitaper
SVD-based method using the second pair of singular vectors,
[12], with 8 multitapers and the first Gaussian window of
length 100 samples (SVDMT), is evaluated.

Class 1 A0
j ,�Aj F 0

j ,�Fj T 0
j ,�Tj

j = 1 1,� 0.1, 0.5� 200, 800�

j = 2 0.1,� 0.1, 0.5� 500, 800�

Class 2 A0
j ,�Aj F 0

j ,�Fj T 0
j ,�Tj

j = 1 1,� 0.1, 0.5� 200, 800�

j = 2 0.1,� 0.2, 0.5� 200, 800�

TABLE III
THE PARAMETERS OF THE TWO CLASSES IN THE EVALUATION.

In the first simulation, the stochastic jitter parameter � of
Table III is 0.004 and the disturbing noise �N is varied giving
an SNR from 10 to 14 dB. The results of all methods for
SNR=12 dB are shown as Receiver Operating Characteristics
(ROC) in Fig. 1b), where it is clear that SVDMT and SPCC
(the diagonal lines) both fail as they perform similarly to
random classification. The results will be the same for all
parameter values, which exclude them for the further analysis.
The WIGAP, WIGA and MFCC are the only methods that are
able to differ between the classes. In Fig. 1c), the true positive
rates (TPR) accepting a false positive rate (FPR) of 5%, are
depicted for the different SNRs. The results show that WIGAP
gives well above 95% TPR down to 12 dB, where WIGA and
MFCC both perform much worse. The WIGA does not work
at all for lower SNRs than 11.5 dB.

In the second simulation, the SNR is fixed to 12 dB and
the parameter � is varied in the evaluations, increasing the
jitter in amplitudes and time- and frequency locations of the
components, according to Table III. The results are presented
in Fig. 1d), where the different TPR, accepting FPR 5%, for
WIGAP, WIGA and MFCC are shown. The WIGAP gives a
TPR of 95% up to � = 0.006, where WIGA as well as MFCC
are below 85% and 70% respectively.
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Fig. 1. a) An example signal for SNR=12 dB, also illustrating the low local
SNR=0 dB of the low-amplitude component (red color); b) The ROC curves
for SNR=12 dB and all the different methods; c) Simulation 1 with � = 0.004
and varying SNR: True positive rates for FPR 5%; d) Simulation 2 with
SNR=12 dB and varying jitters � in model parameters: True positive rates
for FPR 5%.

V. REAL DATA EVALUATION

The methods are evaluated on a small data set of three hand-
sorted classes of syllables recorded from one individual of the
GRW, depicted in Figs. 2a-c). The sample frequency is 11 kHz
and the syllables of a class are time-aligned using ordinary
time-based correlation. A spectrogram from an example of
each class, marked with red color in the Figs. 2a-c), is shown in
Figs. 2d-f). The frequency contents are more or less the same
as well as the time support, although the pitch frequencies of
class 1 are somewhat higher than in the other two classes.
There are clear differences in the distribution of the weaker
components between classes.

In Fig. 3, the upper part of the ROC-curves (note the scale
of the y-axis) are depicted for a pairwise analysis of the three
classes and all methods. The parameters of the methods are
changed for a better fit to the real data, i.e., in accordance
with the large amplitude component lengths of 20-30 ms (220-
330 samples), NP

� = 256 for WIGAP, a 256 sample Hanning
window for SPCC, a 256 sample Hamming window of MFCC
and finally 8 multitapers with the first Gaussian window of
length 200 samples are applied for the SVDMT. In Fig. 3a),
the classification between class 1 and 2 is performed very well
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a) Class 1 b) Class 2 c) Class 3

Fig. 2. a-c) The included syllables of the three classes; d-f) spectrogram of one syllable from each class.

for WIGAP, WIGA and MFCC, that all give a TPR of 100%.
In Fig. 3b), the classification is more difficult as there are
stronger similarities between these two classes. The WIGAP
and WIGA perform well, with WIGAP giving 100% TPR and
WIGA slightly below. All other methods, including the MFCC,
have a bad performance. The last classification is between
class 2 and 3 and the results are shown in Fig. 3c), where
WIGAP gives the highest TPR followed by WIGA and MFCC.

VI. CONCLUSIONS

A novel penalty kernel is suggested, with the aim to elim-
inate the auto-terms and keep the cross-terms of the Wigner-
Ville ambiguity function. The resulting doppler frequency and
lag profiles are used as features for classification of signals
with large differences in component amplitudes. The results
show that the proposed kernel contributes to a classification
that is robust to additive disturbing noise as well as to

stochastic variation in amplitudes and time- and frequency
locations. Evaluation for a real data set of syllables from the
great reed warbler shows that the classification based on the
novel kernel outperforms the established methods, such as
SPCC and MFCC.
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