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Abstract—In this paper the long standing major challenge of
designing binary sequences with good (aperiodic) autocorrelation
properties in terms of Peak Sidelobe Level (PSL) and Integrated
Sidelobe Level (ISL) is considered. The problem is formulated as
a bi-objective Pareto optimization forcing the binary constraint
at the design stage. An iterative novel FFT-based approach
exploiting the coordinate descent method is devised to deal
with the resulting optimization problem which is non-convex
and NP-hard in general. Simulation results illustrate that the
proposed algorithm can outperform some counterparts providing
sequences with desirable PSL as well as ISL.

Index Terms—Radar, Waveform Design, Peak Sidelobe Level
(PSL), Integrated Sidelobe Level (ISL), Binary Phase Codes.

I. INTRODUCTION

Binary sequences with low Peak Sidelobe Level (PSL) and
Integrated Sidelobe Level (ISL) in aperiodic autocorrelation
function have wide applications in active sensing and com-
munication systems [1], [2] being their implementation quite
simple. In radar range compression, low PSL binary codes
are employed to avoid masking of weak targets in range
sidelobes of a strong return [3], [4]. Besides, sequences with
low Integrated Sidelobe Level (ISL) are exploited to mitigate
the deleterious effects of distributed clutter returns close to the
target of interest [5].
Some well-known binary sequences are the Barker codes, M -
sequences, Gold codes, Kasami codes, and Minimum Peak
Sidelobe (MPS) sequences. The Barker sequences shares exce-
lent autocorrelation properties but, unfortunately, are limited to
length 13. M -sequences, are renowned for their ideal periodic
autocorrelation function but have no constraints/guarantees on
the sidelobes of their aperiodic autocorrelation function; hence,
they are almost impractical in radar applications (similarly
Gold codes and Kasami sequences) [1]. Unlike the case of the
periodic correlation, it is not possible to construct sequences
with an exact impulsive aperiodic autocorrelation. Therefore,
a brute-force approach to obtain good sequences is to perform
an exhaustive search, viable especially when the alphabet size
is small, i.e., binary case. In this respect, MPS sequences
are the best binary codes in terms of PSL (known up to
length 105) which are obtained via global search through
some supercomputers; a summary of the best known binary
sequences is presented in [6]. When the code length increases,
it becomes almost impossible to perform the global search.
In these situations, derivation of analytical methods to design
optimal or nearly-optimal sequences are valuable. To this end,
CAN algorithm [7], which minimizes an objective almost
equivalent to the ISL, provides high quality continuous phase
sequences. However, when phase quantization is implemented,
the performance of CAN gets worse especially when the

constellation size is small. In the case of discrete phase code
design, three important algorithms attempting to minimize
the ISL have been proposed in [8]–[10]. The CANARY [8]
(which is an extension of the CAN algorithm) proposes an
adhoc method for designing complementary sets of sequences.
The Iterative Twisted appROXimation (ITROX) [9] method
can be used to obtain sequences (or complementary sets of
sequences) possessing good periodic (ITROX-P) or aperiodic
(ITROX-AP) correlation properties with continuous/discrete
phases. The MBIQ&L algorithm [10] provides an effective
approach to design continuous/discrete phase-only modulated
waveforms sharing a desired range-Doppler response. Notice
that the The MBIQ&L and ITROX are highly-computational
demanding and useful to build code libraries.
In this paper, we propose an attractive iterative method to
design binary sequences jointly optimizing PSL and ISL ac-
cording to a Pareto multi-objective optimization framework1.
It is worth observing that, the synthesis of optimized binary
codes in terms of PSL fills a relevant gap in the open
literature and this is indeed the main technical contribution
of this study2. The problem is formulated as a bi-objective
optimization where a binary constraint is forced at the design
stage. To tackle the resulting non-convex and, in general NP-
hard problem, an iterative procedure based on the Coordinate
Descent (CD) method is introduced. In each iteration of the
proposed algorithm, the solution of a non-convex min-max
problem is handled via a DFT-based procedure. Additionally,
the selected weighted sum of the ISL and PSL based metrics
decreases with iterations until convergence.
The rest of this paper is organized as follows. Section II
presents the problem formulation. In Section III, the CD-based
method is devised together with a technique aimed at solving
the optimization problem involved in each iteration. Section IV
is devoted to numerical examples. Finally, concluding remarks
are given in Section V.

A. Notation

We adopt the notation of using bold lowercase letters for
vectors and bold uppercase letters for matrices. The transpose,
the conjugate, and the conjugate transpose operators are de-
noted by the symbols (·)T , (·)∗, and (·)H respectively. The lp-
norm of a vector x is denoted by ‖x‖p. The letter  represents
the imaginary unit (i.e.,  =

√
−1), while the letter i often

1The PSL and the ISL are the two most important measures quantifying
the quality of the autocorrelation function.

2Notice that there exist algorithms in the open literature for continu-
ous/discrete phase ISL minimization but they usually do not perform well
at the binary case [11].
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serves as index. For any x ∈ R, |x| and arg(x) represent the
modulus and the argument of x, respectively. The abbreviation
“s.t.” stands for “subject to”.

II. PROBLEM FORMULATION

Let x = [x1, x2, · · · , xN ]T ∈ RN be the transmitted fast-
time radar binary code vector with N being the number of
coded sub-pulses (code length). The autocorrelation function
associated with x is defined as

rk =
N−k∑
i=1

x∗i xi+k, k = 0, · · · , N − 1, (1)

and represents the output of the matched filter to x when x is
the input signal. The PSL and ISL metrics, are commonly used
to design waveforms with “good” autocorrelation properties
[1] and are formally defined as PSL = max{|rk|}k=N−1k=1 and
ISL =

∑N−1
k=1 |rk|2, respectively. This paper is focused on

the design of binary sequences considering simultaneously the
PSL and the ISL as performance indices. From an analytical
point of view the problem can be formulated as the following
constrained bi-objective optimization,

P

{
min
x

f1(x), f2(x)

s.t. xi ∈ {−1, 1}, i = 1, · · · , N
(2)

where f1(x) = max{|rk|2}k=N−1k=1 and f2(x) =∑k=N−1
k=1 {|rk|2}. In a multi-objective optimization frame-

work, usually a feasible solution that minimizes all the objec-
tive functions simultaneously does not exist [12]. Accordingly,
the goal is to find the Pareto-optimal solutions to (2) that is
in general a formidable task. A viable means to obtain the
above solutions is the scalarization technique which exploits
as objective a specific weighted sum between f1(x) and f2(x).
Specifically, defining the function fθ(x), parameterized in the
Pareto weight θ ∈ [0, 1],

fθ(x) = θf1(x) + (1− θ)f2(x)

= max
k

[
θ|rk|2 + (1− θ)

N−1∑
l=1

|rl|2
]

(3)

scalarization leads to the design problem

P θ

{
min
x

fθ(x)

s.t. xi ∈ {−1, 1}, i = 1, · · · , N
(4)

Remarkably, P θ reduces to pure ISL (PSL) minimization
setting θ = 0 (θ = 1). Moreover, for any θ, an optimal solution
to (4) is a Pareto-optimal point to Problem (2) (see [13]–[15]
and references therein for details).

III. CD-BASED RADAR CODE OPTIMIZATION

This section introduces an iterative algorithm based on the
CD minimization procedure [16] (also known as alternate opti-
mization [17]) to sequentially optimize the objective over one
variable keeping fixed the others. Otherwise stated, according
to the CD approach, the minimization of a multivariable
function is pursued optimizing it along one direction at a time

[16], [18]. With reference to (4), at each iteration, a code entry
is selected as variable to optimize leading to the following
problems at step n+ 1

P θd,x(n)

min
xd

fθ(xd;x
(n)
−d )

s.t. xd ∈ {−1, 1}
(5)

where xd is the variable to be optimized, x
(n)
−d =

[x
(n)
1 , · · · , x(n)d−1, x

(n)
d+1, · · · , x

(n)
N ]T ∈ RN−1, indicates the

remaining code entries, and

fθ(xd;x
(n)
−d ) = fθ(x

(n)
1 , · · · , x(n)d−1, xd, x

(n)
d+1, · · · , x

(n)
N ). (6)

Thus, denoting by x?d,n+1 the optimal solution to P θ
d,x(n) ,

the optimized radar code at step n + 1 is x(n+1) =

[x
(n)
1 , · · · , x(n)d−1, x

?
d,n+1, x

(n)
d+1, · · · , x

(n)
N ]T . As a result, start-

ing from an initial code x(0), a sequence x(1),x(2),x(3), · · ·
of radar codes are obtained iteratively. A summary of the
proposed approach can be found in Algorithm 1. Notice that,
the monotonic property of the CD technique along with the
fact that the objective function is bounded (from below) are
sufficient to prove the convergence of the sequence of objective
values. It is also worth pointing out that the Maximum Block
Improvement (MBI) updating rule3 [19] can be used in place
of the cyclic one (actually involved in Algorithm 1) to ensure
the convergence of the algorithm to a stationary point. In
practice, a final optimized code can be obtained refining the
solution provided Algorithm 1 through the MBI-modification.
To proceed further, let us make explicit the functional depen-

Algorithm 1 Binary Code Design (BCD) with Low PSL/ISL

Input: Initial code x0 = [x
(0)
1 , x

(0)
2 , · · · , x(0)N ]T , xi ∈ {−1, 1},

i = 1, · · · , N , θ ∈ [0, 1], and required improvement ε;
Output: Optimal solution x?;

1) Initialization.
• Compute the initial objective value
fθ(x

(0)
1 , x

(0)
2 , · · · , x(0)N ) using equation (3);

• Set d := 1 and n := 0;
2) Improvement.

• Solve P θ
d,x(n) obtaining x?d;

• Set n := n+ 1 and
x(n) = [x

(n)
1 , · · · , x(n)d−1, x

?
d, x

(n)
d+1, · · · , x

(n)
N ]T ;

3) Stopping Criterion.
• If |fθ(x(n)) − fθ(x(n−1))| < ε, stop. Otherwise,

update d, i.e., if d < N , d = d+ 1 else d = 1, and
go to the step 2;

4) Output.
• Set x? = x(n).

3The MBI method is an iterative algorithm known to achieve excellent
performance in the maximization of real polynomial functions subject to
spherical constraints [10]. It is proved that any cluster point of the sequence
produced by the MBI method is a stationary point for the considered
optimization problem [19].
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dence of the objective function in P θ
d,x(n) , i. e., fθ(xd;x

(n)
−d ),

over the optimization (real binary) variable xd

rk(xd) =xd

(
x
(n)
d+k1A(d+ k) + x

(n)
d−k1A(d− k)

)
+

N−k∑
i=1,i6=d,d−k

x
(n)
i x

(n)
i+k,

(7)

where 1A(.) denotes the indicator function of the set A =
{1, 2, · · · , N}, i.e., 1A(α) = 1 if α ∈ A, otherwise 1A(α) =

0. Defining the real coefficients, adk = x
(n)
d+k1A(d + k) +

x
(n)
d−k1A(d − k) and cdk =

∑N−k
i=1,i6=d,d−k x

(n)
i x

(n)
i+k, the auto-

correlation function with the explicit xd-dependence can be
written as

rk(xd) = adkxd + cdk, k = 1, · · · , N − 1. (8)

Thus, the optimization problem P θ
d,x(n) can be recast as,min

xd

max
k

[
θ|adkxd + cdk|2 + (1− θ)

N−1∑
l=1

|adlxd + cdl|2
]

s.t. xd ∈ {−1, 1}
which is a non-convex constrained min-max problem. In the
next subsection, an efficient algorithm to tackle P θ

d,x(n) is
derived. This procedure paves the for the design of arbitrary
discrete phase codes.

A. Binary Code Design

In this subsection, an efficient procedure to solve P θ
d,x(n)

is developed exploiting Discrete Fourier Transform (DFT). To
this end, notice that in terms of φd = arg (xd) ∈ {0, π},
P θ
d,x(n) can be recast as,

P̃ θd,φd

{
min
φd

max
k

gθ(φd)

s.t. φd ∈ {0, π}
(9)

where gθ(φd) = θ|r̃k(φd)|2 + (1 − θ)
∑N−1
l=1 |r̃l(φd)|

2
, and

|r̃k(φd)|2 ,
∣∣adkeφd + cdk

∣∣2 . The following lemma provides
a key result to tackle Problem (9).

Lemma III.1. Let νdk = [|r̃k(φ̄1)|2, |r̃k(φ̄2)|2]T ∈ R2, with
φ̄i = π(i− 1), i = 1, 2, and ζdk = [adk, cdk]T ∈ R2. Then

νdk = |DFT(ζdk)|2, (10)

where DFT(ζdk) is the two points DFT of the vector ζdk and
the square modulus is element wise.

Now, defining the matrix U ∈ R(N−1)×2 whose kth row is

uk = θνTdk + (1− θ)
N−1∑
l=1

νTdl ∈ R2, k = 1, . . . , N − 1,

the optimal solution to P̃ θd,φd
is given by

φ?d = π(i? − 1), (11)

where i? = arg min
i=1,2

{
max (ui)

}
, and ui ∈ R(N−1) is the

ith column of U . Hence, based on Lemma III.1 and (11),

the optimal phase code entry can be efficiently computed as
x?d = eφ

?
d using DFT. The proposed approach is reported in

Algorithm 2.
Remark 1. Algorithm 2 needs the evaluation of N − 1 dif-
ferent two points DFTs. Therefore (computed the parameters)
the computational complexity order is O(N) [20].

Algorithm 2 Binary Code Entry Optimization

Input: Initial code vector x(n), code entry d and θ;
Output: Optimal solution x?d;

1) Set for all k = 1, . . . , N − 1

• adk = x
(n)
d+k1A(d+ k) + x

(n)
d−k1A(d− k) and cdk =∑N−k

i=1,i6=d,d−k x
(n)
i x

(n)
i+k;

• ζdk = [adk, cdk]T and νdk = |FFT(ζdk)|2;
2) Calculate uk = θνTdk + (1 − θ)

∑N−1
l=1 νTdl ∈ R2, k =

1, . . . , N − 1 and ωd = [max{u1},max{u2}}]T ;
3) Find the index i? where ωd is minimum;
4) Set x?d = eφ

?
d with φ?d = π(i? − 1).

B. Algorithm Initialization

The solution obtained via the designed method depends
evidently on the initial sequence. As a result, the development
of a heuristic approach that can be used to provide high
quality starting points is valuable. To this end, recall that
the minimization of the lp-norm of the autocorrelation vector
[r1, r2, . . . , rN−1] allows to trade-off ISL and PSL values of
the devised sequence as the value of p increases [21]–[23].
Besides, the PSL coincides with the limit as p → ∞ of
the autocorrelation vector lp-norm. According to the above
considerations, a heuristi procedure to obtain binary codes with
low autocorrelation lp-norm is introduced. In particular, with
reference to the PSL metric, a start-stop procedure involving
a sequence of lp-norm minimization problems with increasing
value of p, p1 < p2 < . . . < pe say, is employed similarly
to [21]. Specifically, the algorithm is initialized with a binary
random sequence and the lp-norm minimization starts with
p = 2, i.e., p1 = 2. Then, p is set to p2 and the algorithm
starts with the solution obtained for p = p1, and so on. In
general, the lp-norm minimization problem for binary codes
can be formulated as

Hp

min
x

N−1∑
k=1

|rk|p

s.t. xi ∈ {−1, 1}, i = 1, · · · , N
(12)

To tackle Hp the algorithm proposed in [24] is exploited,
where each variable block corresponds to one code entry and
the surrogate function of [21] is adopted. Specifically, at step
n + 1 of the iterative procedure, the following optimization
problem is considered,

Hp
d,x(n)

min
xd

N−1∑
k=1

τ̃k|rk(xd)|2 + λ̃k|rk(xd)|

s.t. xd ∈ {−1, 1}
(13)
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where τ̃k =
tpn−

∣∣∣r(n)
k

∣∣∣p−p∣∣∣r(n)
k

∣∣∣p−1(
tn−

∣∣∣r(n)
k

∣∣∣)(
tn−

∣∣∣r(n)
k

∣∣∣)2 , λ̃k =

p
∣∣∣r(n)k

∣∣∣p−1 − 2τ̃k

∣∣∣r(n)k

∣∣∣ and tn =
(∑N−1

k=1

∣∣∣r(n)k

∣∣∣p) 1
p

with[
r
(n)
1 , r

(n)
2 , . . . , r

(n)
N−1

]T
the optimized autocorrelation vector

at step n. In terms of the discrete phase variable φd, Hp
d,x(n)

can be cast as

Hp
d,φd

min
xd

N−1∑
k=1

τ̃k|adkeφd + cdk|2 + λ̃k|adkeφd + cdk|

s.t. φd ∈ {0, π}

Hence, using Lemma III.1 and considering the definition of
νdk in (10), the optimal x?d can be efficiently obtained as
x?d = ejπ(i

?−1), with i? = arg min
i=1,2

{
yi

}
and y = [y1, y2]T =

N−1∑
k=1

(
τ̃kνdk + λ̃k

√
νdk

)
.

IV. PERFORMANCE ANALYSIS

This section is devoted to the performance analysis of the
proposed algorithm for Binary Code Design (BCD) exploiting
PSL and ISL as figure of merits. For comparison purposes
the behavior of the sequences devised via ITROX-AP [9] are
reported too. The considered procedures are initialized using
the same set of 5 random binary starting codes (drawn from
a uniform distribution over the set of the feasible sequences).
Hence, the best obtained objective value is reported and the
resulting sequence picked up. Finally, the stopping criteria
|obj(x(n)) − obj(x(n−1))| ≤ 10−5 is used to terminate all
the algorithms.

A. PSL Minimization

In this subsection, the ability of the proposed algorithms
to synthesize low PSL sequences is assessed. To this end,
the Pareto weight is fixed to θ = 1 and the sequence
of p-values for the selection of the initial starting point is
2, 22, 23, · · · , 213, i.e., pi = 2i, i = 1, . . . , 13.
In Fig. 1, the PSL versus the code length N of BCD and
ITROX-AP are reported. To highlight the quality of BCD
algorithm also the PSL of MPS sequences, obtained via ex-
haustive search up to the length of 105, is shown in the figure.
The plot clearly illustrates the effectiveness of our approach.
Indeed, BCD significantly outperforms ITROX-AP. Besides it
provides a PSL quite close to the global optimum of MPS
sequences but with a much lower computational complexity
and without restrictions to the maximum code length. This
last feature is particularly appealing since the higher N the
higher the pulse compression. Interestingly, BCD provides in
some circumstances the global optimal solution (see in Fig. 1
the points where BCD and MPS coincide).
In Fig. 2 the autocorrelation function devised via BCD and
ITROX-AP for sequence length 126 is displayed. Therein, the
PSL of BCD is equal to 8 whereas the PSL of ITROX-AP is 12
which further confirms the effectiveness of the new framework.
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Fig. 1. Comparison between the PSL values of binary sequences obtained
through BCD, ITROX-AP, and exhaustive search (MPS). For each length,
algorithm (with heuristic initialization and θ = 1) and ITROX-AP have been
run 5 times and from the resulting 5 PSL values the best one has been chosen.
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Fig. 2. Autocorrelation function versus delay bin for binary codes of length
126: red curve synthesized via BCD algorithm (with heuristic initialization
and θ = 1); blue curve obtained through ITROX-AP.

B. ISL Minimization

The performance assessment of BCD for ISL minimization
is now considered. In this case, θ = 0 and the initialization
procedure in Subsection III-B is not performed. Fig. 3 shows
the ISL versus the code length N for BCD and ITROX-AP.
The result highlights that BCD outperforms ITROX-AP with
a maximum ISL gain of 2.25 dB. Remarkably, BCD also
provides an ISL close to that of the MPS sequences. In Fig. 4,
the autocorrelation function devised via BCD and ITROX-AP
for sequence length 126 is reported. In this specific case, BCD
provides a ISL-gain over ITROX-AP of 2.1 dB.

C. Pareto-Optimal Solution

In this subsection, the impact of the parameter θ on the
designed code is assessed. Table I reports the PSL and the
ISL of the solutions obtained via BCD assuming N = 512 and
θ ∈ {θ1, . . . , θ4} with θ1 = 1, θ2 = 0.7, θ3 = 0.3, and θ4 = 0.
The starting sequence used at θ = θi is the code optimized at
θ = θi−1; also, at θ = θ1 the heuristic approach of Subsection
III-B is used. As expected, θ trades-off ISL and PSL values.
Specifically, the higher θ the better the PSL and the worst the
ISL, that is a classical feature of bi-objective Pareto curves.
Otherwise stated, any solution is a “Pareto-optimal” point.
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Fig. 3. Comparison among the ISL values of binary sequences obtained
through BCD algorithm and ITROX-AP. For each length, BCD algorithm
(with θ = 0) and ITROX-AP have been run 5 times and from the resulting 5
ISL values the best one has benn chosen.
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Fig. 4. Autocorrelation function versus delay bin for binary codes of length
126: red curve synthesized via BCD algorithm (with θ = 0); blue curve
obtained through ITROX-AP.

V. CONCLUSION

The synthesis of binary codes exhibiting good aperiodic
correlation features has been addressed. Specifically, PSL
and ISL have been adopted as performance metrics and the
design problem has been formulated as a bi-objective opti-
mization. The non-convex and, in general, NP-hard problem
resulting from scalarization is handled via a novel iterative
procedure based on the CD method and an efficient DFT-
based procedure. Finally, a heuristic procedure based lp-
norm minimization has been introduced to suitably initialize
the new convergence-ensured algorithm. Simulation results
have illustrated the effectiveness of the new BCD algorithm.
Specifically the proposed method can outperform ITROX-AP
with reference to both PSL and ISL.

TABLE I
PSL AND ISL OF “PARETO-OPTIMAL” SOLUTIONS

θ = 0 θ = 0.3 θ = 0.7 θ = 1

PSL (dB) 13.97 13.80 13.61 13.42
ISL (dB) 45.00 45.04 45.14 46.14
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