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Abstract—A sparsity-aware proportionate normalized maximum
correntropy criterion (PNMCC) algorithm with lp-norm penalty,
which is named as lp-norm constraint PNMCC (LP-PNMCC), is
proposed and its crucial parameters, convergence speed rate and
steady-state performance are discussed via estimating a typical
sparse multipath channel and an typical echo channel. The LP-
PNMCC algorithm is realized by integrating a lp-norm into the
PNMCC’s cost function to create an expected zero attraction
term in the iterations of the presented LP-PNMCC algorithm,
which aims to further exploit the sparsity property of the sparse
channels. The presented LP-PNMCC algorithm has been derived
and analyzed in detail. Experimental results obtained from sparse
channel estimations demonstrate that the proposed LP-PNMCC
algorithm is superior to the PNMCC, PNLMS, RZA-MCC, ZA-
MCC, NMCC and MCC algorithms according to the convergence
speed rate and steady-state mean square deviation.

I. INTRODUCTION

The quality of modern communication is largely dependent
on channel state information that is always implemented by
channel estimation [1]. Furthermore, the early studies showed
that multipath channel and echo channel are typical models in
practical applications [1], [2], [3], which are usually sparse.
As a sparse channel, it has a typical feature that the major
of the channel responses are close to zeros or equal to
zeros, while only few channel responses are non-zero ones
[4]. Moreover, channel estimations and system identifications
have attracted a great concern in recent decades. Adaptive
filter technology is a very effective method to estimate or
identify these channels [5], [6], which has been widely s-
tudied. However, most of the adaptive filter algorithms are
mainly presented for non-sparse systems and Gaussian noise
environment. To estimate the sparse channels, a lot of adaptive
filter algorithms were reported [7], [8], [9], [10], [11], [12],
[13], [14] to estimate sparse channels. Least mean square
(LMS) algorithm [7] has attracted much attention owing to
its simple and low computational complexity. However, the
LMS algorithm is sensitive to the scaling of the input training
signal and it has a poor performance in low signal to noise

ratio (SNR) environment. Then, least mean fourth (LMF) [8],
[9], normalized LMS (NLMS) [10], [11] and affine projection
algorithm (APA) [5], [12] were presented to improve LM-
S’s estimation performance. Although these sparse adaptive
filters have achieved good performance for estimating sparse
channels in Gaussian environment, they cannot well exploit
the sparseness of sparse channels. After that, zero attracting
techniques inspired by compressed sensing (CS) [15] have
been introduced into the exiting classical adaptive filtering
algorithms, which are realized by using different norm pe-
nalizes such as l1-norm, reweighted l1-norm and lp-norm.
As a result, the zero attracting LMS (ZA-LMS), reweighted
ZA-LMS (RZA-LMS) and lp-norm constrained LMS were
presented by incorporating the zero attracting technique into
LMS’s cost function, respectively [16], [17]. However, these
sparse adaptive filter algorithms are obtained in Gaussian
environment, while their performance might be deteriorated
in non-Gaussian environment.

Recently, a maximum correntropy criterion (MCC) algorith-
m has been presented based on information theoretic quantity
in [18], which achieves robust performance in non-Gaussian
environment. However, the MCC has a similar drawback with
the well-known LMS algorithm, which is sensitive to the
scaling of the input signal. Then, normalized MCC (NMCC)
and proportionate NMCC (PNMCC) algorithms have been
presented in [19] to improve the performance of the MCC
algorithm. Similarly, the MCC algorithm cannot utilize the
sparseness characteristics of these sparse channels. Motivated
by the ZA- and RZA- LMS algorithms, ZA- and RZA- MCC
have been presented in [20], [21].

A lp-norm penalized proportionate normalized MCC al-
gorithm (LP-PNMCC) is proposed, which is realized by
incorporating a lp-norm constraint term into the PNMCC’s
cost function. The proposed LP-PNMCC algorithm converges
faster and has smaller steady-state error than the PNMCC, ZA-
and RZA- MCC algorithms for estimating sparse channels.
The LP-PNMCC algorithm has an extra parameter p which is
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ranging from 0 to 1. The key parameters, convergence speed
rate and steady-state error behavior of the LP-PNMCC algo-
rithm are investigated and discussed in detail. The simulation
results give that the presented LP-PNMCC algorithm signifi-
cantly improves both the convergence speed rate and steady-
state performance compared with the PNMCC algorithm for
estimating sparse channels.

II. REVIEW OF THE PNMCC ALGORITHM

In sparse system identification, an unknown impulse re-
sponse w(n)=[w0, w1, ..., wN−1]

T and an input signal x (n)
are considered to get the estimation signal ŵ(n) which is close
to w(n). Here, normalized maximum correntropy criterion
algorithm (NMCC) is used to estimate w(n), and the NMCC’s
updating equation is given by [19]

ŵ (n+ 1) = ŵ (n)+χNMCC

exp
(
− e2(n)

2σ2

)
∥x (n)∥2

e (n)x (n) , (1)

where e (n) = d(n) − y (n) is the estimation error which
is the difference between the expected signal d(n) =
xT (n)w(n) + v(n) and the estimated signal y (n) =
xT (n)ŵ(n). Then, a gain assignment matrix G (n) =
diag (g0 (n) , g1 (n) , g2 (n) , · · ·, gN−1 (n)) [22] is introduced
into the equation (1) to carry out the PNMCC algorithm whose
updated equation is

ŵ (n+ 1) = ŵ (n)+χ
G (n) exp

(
− e2(n)

2σ2

)
xT (n)G (n)x (n) + θ

e (n)x (n) .

(2)

Here, θ denotes a very small positive parameter and the
elements gi (n) is obtained by

gi (n) =
φi (n)

N−1∑
i=0

φi (n)

, 0 ≤ i ≤ N − 1 (3)

with

φi (n) = max

[
γg max

[
ρp, |ŵo (n)| , |ŵ1 (n)| ,
· · ·, |ŵN−1 (n)|

]
, |ŵi (n)|

]
,

(4)

where ρp = 0.01 and γg = 5/N . It is found that there
is an extra gain assignment matrix G(n) in the PNMCC
algorithm in comparison with the NMCC algorithm. However,
the PNMCC’s convergence speed may be worse than the
NMCC algorithm in the steady-state stage.

III. THE PROPOSED LP-PNMCC ALGORITHM

Similarly to the sparse LMS algorithms [16], [17], a sparse-
aware proportionate normalized maximum correntropy cri-
terion algorithm with lp-norm constraint [17], [23], [24] is
proposed. The LP-PNMCC algorithm is implemented by intro-
ducing a lp-norm constraint into the PNMCC’s cost function,
which is to form a zero attractor. The proposed LP-PNMCC
aims to further exploit the sparsity property of the sparse

channels by the designed zero attractor. The proposed LP-
PNMCC solves the following problem

min (ŵ (n+ 1)− ŵ (n))
T
G−1 (n) (ŵ (n+ 1)− ŵ (n))

+γLPG
−1 (n) ∥ŵ (n+ 1)∥p

subject to
⌢
e (n) =

[
1− ξ exp

(
− e2(n)

2σ2

)]
e (n) ,

(5)

where ⌢
e (n) = d (n)− xT (n) ŵ (n+ 1), γLP denotes a very

small constant for trading off the sparsity and the estimation
error, and 0 < p < 1. The modified cost function of the LP-
PNMCC is

JLP = (ŵ (n+ 1)− ŵ (n))
T
G−1 (n) (ŵ (n+ 1)− ŵ (n))

+ γLPG
−1 (n) ∥ŵ (n+ 1)∥p

+ λ

(
⌢
e (n)−

[
1− ξ exp

(
−e2 (n)

2σ2

)]
e (n)

)
,

(6)

where λ is a Lagrange multiplier.
Based on Lagrange multiplier method [25], we obtain the

gradients of JLP, which are given by
∂JLP

∂ŵ (n+ 1)
= 0 and

∂JLP
∂λ

= 0, (7)

Then, we have
ŵ (n+ 1) = ŵ (n) + λG (n)x (n)

− γLP
∥ŵ (n+ 1)∥1−p

p sgn (ŵ (n+ 1))

|ŵ (n+ 1)|1−p

(8)

and
⌢
e (n)−

[
1− ξ exp

(
−e2 (n)

2σ2

)]
e (n) = 0 (9)

By multiplying xT (n) on both sides of (8) and considering
equation (9), we get

λ =
ξ exp

(
− e2(n)

2σ2

)
e (n)

xT (n)G (n)x (n)

+
γLPx

T (n)
∥ŵ(n+1)∥1−p

p sgn(ŵ(n+1))

|ŵ(n+1)|1−p

xT (n)G (n)x (n)

(10)

By substituting (10) into (8) and rounding it using the rule
in [19], the updating equation of the proposed LP-PNMCC
algorithm is

ŵ (n+ 1) = ŵ (n) + χ1

exp
(
− e2(n)

2σ2

)
e (n)G (n)x (n)

xT (n)G (n)x (n) + θ

− ρLP
∥ŵ (n)∥1−p

p sgn (ŵ (n))

|ŵ (n)|1−p
+ ϕLP

,

(11)

where χ1 = ξµ, ρLP = γLPµ and ϕLP denotes a positive
constant with a small value to avoid dividing by zero. Our
proposed LP-PNMCC algorithm with expected zero attractor
can significantly improve the convergence at the steady-state
stage for estimating sparse channels.
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IV. EXPERIMENTAL RESULTS

The estimation performance of the LP-PNMCC is presented
for estimating sparse channels. A multipath channel with its
length of N = 16 and K non-zero coefficients is used
to estimate the performance of the LP-PNMCC algorithm
first. Herein, mean square deviation (MSD) is used as a
metric to evaluate the behavior of the developed LP-PNMCC
algorithm, giving by MSD(ŵ (n))= E

[
∥w (n)− ŵ (n)∥2

]
.

A mixed Gaussian noise (1 − θ)N(ι1, ν
2
1) + θN(ι2, ν

2
2) =

(0, 0.01, 0, 20, 0.05) is used to model the noise signal v (n),
where N(ιi, ν

2
i )(i = 1, 2) are the Gaussian distributions with

their means of ιi and variances of ν2i . Here, θ is used to get
a balance of the two mixed noises. Parameters χ1, ρLP and p
have significant effects on the behaviors of the proposed LP-
PNMCC algorithm. The parameter effects of χ1 is shown in
Fig. 1. The parameters used in this experiment are K = 1,
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Fig. 1. Effects of χ1 on the proposed LP-PNMCC algorithm.
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Fig. 2. Effects of ρLP on the proposed LP-PNMCC algorithm.

σ = 1000, θ = ϕLP = 0.01, ρLP = 9 × 10−6, and
p = 0.65. It is found that χ1 is similar to the step size in
the LMS algorithm and it can control the convergence of the
LP-PNMCC algorithm. With an increasing of χ1, the MSD is
deteriorated, while the convergence speed rate is increased.

Next, the effects of ρLP is investigated and its performance
is demonstrated in Fig. 2. It is observed that the MSD
decreases when ρLP decreases form 9 × 10−4 to 5 × 10−5.
When ρLP is less than 5×10−5, the MSD is becoming worse.
The performance of p is given in Fig. 3. We can see that a
smaller steady-state MSD is achieved when a large p is used
in the LP-PNMCC algorithm. Thus, proper parameters should
be chosen for achieving a good performance in sparse channel
estimation.

Based on the above parameter selections, the channel in
the above experiment with K = 1, 2, 4, 6 are adopted to
evaluate the behaviors of the LP-PNMCC algorithm and its
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Fig. 3. Effects of p on the proposed LP-PNMCC algorithm.
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Fig. 4. MSD of the LP-PNMCC algorithm for K=1.
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Fig. 5. MSD of the LP-PNMCC algorithm for K=2.
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Fig. 6. MSD of the LP-PNMCC algorithm for K=4.

behaviors are described in Figs. 4, 5, 6 and 7, respectively.
The channel estimation behaviors of the well devised LP-
PNMCC algorithm is compared with the early reported MCC,
NMCC, PNLMS, PNMCC, ZA- and RZA- MCC algorithms.
In this simulations, the parameters are set to be χMCC=χZA =
χRZA = 0.03, χNMCC=0.4, ρZA = 8 × 10−5, ρRZA =
2×10−4, µPNLMS = 0.27, χ=0.24, χ1=0.3, ρLP = 9×10−6

and p = 0.65. χMCC, χZA and χRZA are the step sizes of
the MCC, ZA- and RZA- MCC algorithms, while ρZA and
ρRZA are the penalty controlling parameters of the ZA-MCC
and RZA-MCC algorithms. It is found that the developed LP-
PNMCC algorithm achievs the fastest convergence speed rate
and lowest steady-state misalignment for K = 1. With the
increasing of K, the convergence speed of LP-PNMCC is
getting worse. However, the steady-state MSD of the devel-
oped LP-PNMCC algorithm is still the lowest for different
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Fig. 7. MSD of the proposed LP-PNMCC algorithm for K=6.
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Fig. 8. MSD of the LP-PNMCC algorithm.

K. Then, the convergence analysis is investigated with the
same estimation error in Fig. 8. The simulation parameters are
χMCC= 0.0052, χNMCC=0.085, χZA = 0.01, χRZA = 0.015,
ρZA = 3 × 10−5, ρRZA = 7 × 10−5, µPNLMS = 0.072,
χ=0.088, χ1=0.3, ρLP = 9 × 10−6 and p = 0.45. From the
convergence performance shown in Fig. 8, we can see that the
LP-PNMCC algorithm achieves the fastest convergence speed,
which depends on the proposed zero attractor that improves
the convergence at the steady-state stage.

To further understand the performance of the proposed LP-
PNMCC algorithm, an echo channel with different sparsity
levels is investigated. The echo channel with a length of 256
and a sparseness of ζ12(w) are used to discuss the performance
with respect to the MSD, where the sparsity measurement is
defined by ζ12(w) = N

N−
√
N

(
1− ∥w∥1√

N∥w∥2

)
[1]. In this setup,

the first 8000 iterations, ζ12(w) = 0.8222 is used. After 8000
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Fig. 9. MSD of the LP-PNMCC algorithm for estimating network echo
channel.

iterations, ζ12(w) is changed to be ζ12(w) = 0.7362. Here,
the simulation parameters are χMCC=χZA = χRZA = 0.0055,
χNMCC=1.3, ρZA = 4× 10−6, ρRZA = 1× 10−5, µPNLMS =
1, χ=0.9, χ1=0.8, ρLP = 1 × 10−6 and p = 0.8. The echo
channel estimation performance based on the proposed LP-
PNMCC algorithm is shown in Fig. 9. It is found that the
proposed LP-PNMCC algorithm achieves the fastest conver-
gence and smallest MSD for estimating the echo channel under
different sparsity levels.

V. CONCLUSION

A lp-norm constrained proportionate normalized maximum
correntropy criterion algorithm has been proposed and its
performance has been discussed in term of convergence speed
and steady-state performance for estimating sparse channels.
The proposed LP-PNMCC algorithm is derived and analyzed
in detail. The LP-PNMCC algorithm is realized by giving an
expected zero attractor in its iteration, which can significantly
improve its performance. The simulation results demonstrated
that the proposed LP-PNMCC algorithm is superior to the
PNMCC and previously presented ZA- and RZA-NMCC
algorithms.
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