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Abstract—The multi-input single-output multi-eavesdropper
(MISOME) wiretap channel is one of the generic wiretap chan-
nels in physical layer security. In Khisti and Wornell’s classical
work [1], the optimal secure beamformer for MISOME has
been derived under the total power constraint. In this work, we
revisit the MISOME wiretap channel and focus on the large-scale
transmit antenna regime and the constant modulus beamformer
design. The former is motivated by the significant spectral
efficiency gains provided by massive antennas, and the latter
is due to the consideration of cheap hardware implementation of
constant modulus beamforming. However, from an optimization
point of view, the secrecy beamforming with constant modulus
constraints is challenging, more specifically, NP-hard. In light of
this, we propose two methods to tackle it, namely the semidefinite
relaxation (SDR) method and the ADMM-Dinkelbach method.
Simulation results demonstrate that the ADMM-Dinkelbach
method outperforms the SDR method, and can attain nearly
optimal secrecy performance for the large-scale antenna scenario.

I. INTRODUCTION

The multi-input single-output multi-eavesdropper wiretap
channel, coined MISOME for short, is one of the generic
wiretap channels studied in physical-layer security. In the
classical work [1], Khisti and Wornell proved that transmit
beamforming is optimal for achieving the secrecy capacity of
MISOME. Transmit beamforming is a simple, yet effective
way of conveying information. Recent studies show that with
massive transmit antennas transmit beamforming can provide
substantial spectral efficiency gains, and attain nearly optimal
performances [2]-[4]. Despite the effectiveness of large-scale
array beamforming, the increase of the number of transmit
antennas would also scale up hardware costs, as each antenna
usually requires a dedicated RF chain. In light of this, the
works [5]-[9] studied constant envelope/modulus precoding
for massive MIMO by fixing the amplitude and changing only
the phase of the transmit signal at each antenna. The main
advantage of the constant modulus precoding is that it can be
easily implemented with a single RF chain by using phase
shifters and a cheap variable gain amplifier [8].

In this work, we revisit the secure beamforming problem for
the MISOME wiretap channel, with a focus on the large-scale
transmit antenna regime and constant modulus beamforming
(CMB). It is well known that under the total transmit power
constraint, the optimal secure beamforming for the MIS-
OME wiretap channel is obtained as the principle generalized
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eigenvector associated with the legitimate channel and the
eavesdropping one [1]. However, under the CMB requirement
the principle generalized eigenvector is generally no longer
optimal or even feasible; it is thus needed to take CMB
constraints explicitly into the secure beamforming design.

In view of this, we formulate a secure CMB problem
for secrecy capacity maximization of the MISOME wiretap
channel. Owing to the CMB constraints, the secrecy capacity
maximization problem is generally NP-hard. To tackle it, two
approximate methods are proposed. The first one is based
on the semidefinite relaxation (SDR), which has been widely
used for beamformer designs in the literature [10]-[13] with
satisfactory performance. However, for large-scale transmit
antennas, SDR-based approach may suffer from high com-
putational complexity, owing to lifting the variable dimension.
To circumvent the dimensionality problem, we further propose
a low-complexity nonconvex alternating direction method of
multipliers (ADMM)-based Dinkelbach approach [14], which
works directly over the vector variable space. The ADMM-
Dinkelbach method iteratively solves a sequence of nonconvex
subproblems via nonconvex ADMM. Inspired by [15], we
show that the nonconvex ADMM converges to a Karush-Kuhn-
Tucker (KKT) point of the subproblem. The preliminary simu-
lation results demonstrate that the ADMM-Dinkelbach method
outperforms the SDR method in both secrecy performance and
computational complexity.

II. SYSTEM MODEL AND PROBLEM STATEMENT

Y

h Bob
Alice Y'Y
Eve

Fig. 1. The MISOME wiretap channel model.

Consider the generic MISOME wiretap channel in Figure 1,
where a transmitter, named Alice, employs a large-scale an-
tenna array to send information to a single-antenna receiver,
named Bob, and a multiantenna eavesdropper, named Eve,
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overhears the transmission. Assuming that transmit beamform-
ing is applied at Alice, the transmit signal may be expressed
as

x(t) = ws(t), (1)

where s(t) € C is coded confidential information with unit
power, and w € CV is the transmit beamformer with constant
modulus, i.e.,

where P > 0 represents the per-antenna transmit power. The
received signal at Bob and Eve are given by

y(t) = hH:c(t) +np(t) € C 3)

and
Yo (t) = GHx(t) + n.(t) € CM, 4)

respectively (resp.), where M is the number of antennas at
Eve, ny(t) ~ CN(0,1) and n.(t) ~ CN(0,I) are additive
Gaussian noise; h € CV and G € CV*M denote the channels
from Alice to Bob and to Eve, resp.

According to (1)-(4), the secrecy capacity of the MISOME
is expressed as [1]:

Ry(w) = [log(1 + [h7w[?) —log(1 + |GTw|?)] " (5)

where []* = max{0,-}. Now, our goal is to maximize the
secrecy capacity Rs(w) by optimizing the beamformer w
under the constant modulus constraints, viz.,

R, 6
Jnax (w) (6a)
st. Jwi| =VP, i=1,...,N. (6b)

It is well known that Problem (6) has a closed-form optimal
solution (i.e., the principle generalized eigenvector of h and
G), when the total power constraint is imposed [1]. However,
under the constant modulus constraint, problem (6) becomes
very difficult to solve. In particular, the following result
identifies the complexity of solving problem (6).

Proposition 1. Problem (6) is NP-hard in general.

Proof. We need the following lemma, which is established in
the proof of Proposition 3.3 in [16]:

Lemma 1. Consider the following problem
minN w’ Quw
weC (7)
st. |lw;| =1, i=1,...,N.
for some Q = 0. Then, problem (7) is NP-hard in general.

Let us show that problem (6) includes problem (7) as a
special case, thereby establishing NP-hardness of problem (6).
It is easy to see that problem (6) is equivalent to

1+ ||GHw|?

Let us consider a special case of problem (8) via setting h =
[1,0,...,0] and P = 1. Then, we have |hw|? = |w;|? =
1 for any feasible w, and thus problem (8) can be further
simplified as

: H H
GG 9
Jnin w ( Jw %a)
st Jw)|=1,i=1,...,N, (9b)

which is exactly the same as problem (7) by setting @ =
GG - o. [

In light of Proposition 1, in the following sections we
focus on finding some high-quality approximate solutions for
problem (6).

III. AN SDR APPROACH TO PROBLEM (6)

Notice that in (8), the magnitude of w; can be normalized
to one by multiplying the channels with \/P. Therefore,
problem (8) can be reexpressed as

wh (LT + PGGT)w

min 10a
weey wh (I + PhhM)w (102)
st |lwi| =1, i=1,...,N. (10b)

By denoting W = ww" and dropping the rank-one constraint
on W, we get an SDR of (10), viz.,

Te(W (L1 + PGG™))

i 1
weny Tr(W (L1 + PhhH)) (1)
st Wiy=1,i=1,....N, (11b)
W = 0. (11c)

Problem (11) can be rewritten as an SDP by applying the
Charnes-Cooper transformation [13]. In particular, by making
a change of variable W = W/C for some ¢ > 0, problem (11)
can be equivalently written as

Wrélﬂi{[%’g Tr(VV(%I + PGG™)) (12a)
s.t. Tr(VV(%IJr Phh')) =1, (12b)
Wiy=¢ i=1,...,N, (12¢)

W =0, (>0, (12d)

which is an SDP and can be solved to global optimality with
general purposed conic solvers. In general, the SDR is not
tight, i.e., the solution of problem (12) may not be of rank
one. In such a case, eigenvalue decomposition and projection
are needed to extract a feasible solution for problem (6).
Algorithm 1 summarizes the SDR-based approach to (6).

IV. AN ADMM-DINKELBACH APPROACH TO (6)

As mentioned in Introduction, for large-scale antenna sce-
nario the SDR method may suffer from the curse of dimen-
sionality. Nevertheless, the SDR method is still meaningful

min T2 (8a) as it may serve as a benchmark. In this section, we propose
weCN 1+ |hfw| . ) .
) another low-complexity algorithm for problem (6), which can
s.t. |w;| = \/]3’ i=1,...,N. (8b)  petter explore the problem structure.
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Algorithm 1 An SDR Approach to Problem (6)

1: Solve problem (12) to obtain (W*,¢*) and let W* =
W /¢

2: if rank(W™*) < 1 then

3: Perform eigendecomposition W* = w*(w*)
output v/ Pw* as an optimal solution of (6).

4: else

Let v be the principle eigenvector of W* and output
Pexp(jZv) as an approximate solution of (6).

H and

w =
5: end if

To proceed, notice that the objective in (10) is a ratio of
quadratic functions. A classical way to handle this fractional
objective is the Dinkelbach method [14], which translates the
fractional program into a sequence of quadratic programs.
Algorithm 2 summarizes the main procedure of the Dinkelbach
method for problem (10). According to the classical conver-
gence result of the Dinkelbach method [14], Algorithm 2 con-
verges to an optimal solution of (10) whenever problem (13)
is optimally solved throughout the iterations. Unfortunately,
problem (13) can be as hard as the original problem (10).
As a compromise, we propose to apply ADMM method to
approximately solve (13), which is detailed in the remaining
part of this section.

Algorithm 2 A Dinkelbach Approach to Problem (10)
1: Initialize a feasible w for (10)

2: repeat

wl (L I+ PGGH)w
3: N4 —a T prp o
- wH(%I+PhhH)w
4:

w ¢ arg min w? (GG — nhh™)w

weC

st Jwi| =1, i=1,...,N.

(13)

5. until some stopping criterion is satisfied
. Output w.

(=)

Notice that under the unit modulus constraints the objective
of problem (13) can be turned into convex by adding some
sufficiently large constant. Therefore, problem (13) can be
equivalently written as

. 1
min ~w Aw
weCN

st Jwi| =1, i=1,...,N,

where A £ GG — nhhl — )\in (GG — nhh™)I = 0.
To fit problem (14) into the ADMM framework, let us rewrite
problem (14) as

(14)

. 1
min  ~w® Aw
w,zcCN 2

st |z =1, 4i=1,...,N,

r=w.

5)

Its augmented Lagrangian reads

L(x,w,v) = %wHAw + Re{v(z —w)} + gHw —w||?
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where p > 0 and v € CV is Lagrangian multiplier associated
with the second equality constraint. Let (°,w",v?) be the
initialized primal-dual variables. The ADMM method for (13)
consists of the following three steps:

2! = arg ‘m‘in L(x, w*, vk), (16)
x|=1
wr ! = argmin £(2F !, w, v*), (17)
VkJrl — Vk =+ p(mk+1 _ wk+1) (18)
for k =0,1,.... The subproblem (16) is equivalent to
vl (w" — p~ M7,
which has a closed-form solution
(wh—p~ k), . E =1,k
(mk-&-l)i _ ) TwF=p=TwF),|’ if (w p~vY)i #0 (19)
(xF);, otherwise

The subproblem (17) is an unconstrained least-squares prob-
lem. Take the first-order derivative and set it to zero to get

AwF T — pk — p(gh T — k) =0 (20)
Rearranging the above terms yields
wh = (pI + A)7Y(pF Tt + k). (21)
Also, it follows from (18) and (20) that
VR = AwF Y Y k. (22)

Algorithm 3 summarizes the main steps of ADMM for (13).

Algorithm 3 A Nonconvex ADMM Approach to (13)
1: Initialize with a feasible primal-dual point (z°,w?,?),
choose p > 0 and set k =0
repeat
Compute "1 by (19);
Compute w**! by (21);
Compute **1 by (22);
k< k+1
until some stopping criterion is satisfied
: Output (z*, w” v*).

R NN AW

Since problem (13) is a nonconvex problem, Algorithm 3
in general has no convergence guarantee. Nevertheless, with
some appropriately chosen parameter p, we establish the
following convergence for Algorithm 3.

Proposition 2. Suppose p > max{\/2Amax(A), Amax(A4)}.
Then, every limit point generated by Algorithm 3 is a KKT

point of problem (14).

Proof. The proof follows from [15] with some modification
in order to address the nonconvex unit modulus constraints.
Owing to the page limit, herein we provide a sketched proof.

First of all, we show sufficient decrease of the augmented
Lagrangian function L(z*,w"* v*) after one cycle of the
primal-dual update in (16)-(18), i.e.,

£($k7wk7yk) _ E(il:k+1,wk+1,l/k+1) Z é||wk+1 _ ,wk||27
(23)
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where 0 £ £ — p M Amax(A) > 0 due to p > \/2Anax(A).
Secondly, we show that £(z*, w*, v*) is lower bounded
below, i.e.,

Lk, wk, vF) >0, V k. (24)

Thirdly, by (23) and (24), we can establish the following
limit:
lim {w* ™! —wk} =0 (25)
k—o00
which together with (22) and (18) implies
lim {"! — " =0, lim {z"! — w1} =0. (26)
k—oo k—o0

Let w® be any converging subsequence of w” with the limit
point w. Then it follows from (25), (26) and (22) that

lim w®*!'= lim w" =w (27a)
kj—o0 kj—o0
lim "' = lim w*™' =w (27b)
k}j*}OO k‘]‘*}OO
lim v% = lim v»* = lim Aw" ™' = Aw (27¢)
kj—o00 kj—o0 kj—o0
In particular, (27b) implies that
|w;] =1, i=1,...,N. (28)
Moreover, since £**! is a minimizer of £(zx,w"*,v*) w.rt.
x, we have
E(w,wk7uk) > ﬁ(mk+17wk,uk), (29)

for all feasible x. Taking limit along the subsequence k; in
the above inequality yields

lim L(x,w" v

k‘]‘A)OO
=L(x,w, Aw)

> lim L(zF T whi vh)
k}j—H)O

=L(w,w, Aw)

(30)

for all feasible x. That is, w is an optimal solution of
L(x,w, Aw); thus satisfying the following first-order opti-
mality condition:

Aw+¢Ow=0 31)

where ¢ € R¥ is the dual variable associated with the unit
modulus constraints, and ® denotes elementwise product. It is
easy to verify that Eqn. (31) and (28) form the KKT conditions
of problem (14). [ |

V. SIMULATION RESULTS

We use Monte-Carlo simulations to verify the effectiveness
of our design. The following simulation settings are used,
unless otherwise specified: The number of receive antenna at
Eve is M = 20. For the ADMM-Dinkelbach method, the inner
ADMM algorithm sets p according to Proposition 2, and stops
when ||z* —w"||2/||2¥||2 < 107, while the outer Dinkelbach
iteration is executed until the successive difference of 7 is
smaller than 102 or a maximum number of 50 iterations
achieves. All the channels are randomly generated with i.i.d.
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standard complex Gaussian distribution. All the results were
averaged over 1,000 random channel realizations.

In the first example, we study the average secrecy rate
performance of different designs when increasing the total
transmit power Piota1 = NP from 0dB to 14dB. Fig. 2(a)
shows the results for N = 20 and M = 20. In the leg-
end, “Dinkelbach CM BF” and “SDR CM BF” correspond
to the proposed constant modulus beamforming designs in
Sec. IIT and IV, respectively; “Generalized eigenvector CM
BF” represents the secrecy rate obtained by naively projecting
the generalized eigenvector beamformer in [1] onto the circle.
Since the optimal rate of problem (6) is generally not known,
we instead consider a secrecy rate upper bound calculated
from the SDR solution W* in (11), which is labeled as “Rate
upper bound”. From Fig. 2(a) we see that with the increase
of the total power, the secrecy rates of Dinkelbach method
and the SDR method both increase, and the former is slightly
better than the latter. On the other hand, the secrecy rate
of generalized eigenvector beamforming tends to decrease,
because the generalized eigenvector beamforming is optimized
under the total power constraint; after projection, there is
no performance guarantee for the generalized eigenvector
beamforming. To test the performance of the designs under
large-scale antenna settings, we further increase N to 50 and
100, and keep M = 20. The result is shown in Fig. 2(b)
and (c), resp. From the figures, we see that the performance
of Dinkelbach method is far better than the SDR method, and
the former is very close to the rate upper bound, which implies
that the Dinkelbach method actually can find a nearly optimal
solution for problem (6) under the considered setting.

To further demonstrate the superior performance of the
Dinkelbach method, we record the running times of the
Dinkelbach method and the SDR method for the first 20
randomly generated channel realizations under the setting of
Fig. 2(b). The result is shown in Fig. 3. From the figure, we
see that the Dinkelbach method runs much faster than the SDR
method. This is mainly attributed to the efficient closed-form
updates of the ADMM.

VI. CONCLUSION

We have considered a constant modulus secrecy beamform-
ing design for the MISOME wiretap channel. Due to constant
modulus constraints, the resultant secrecy rate maximization
(SRM) problem is no longer tractable. To tackle this SRM
problem, two different methods have been proposed. One
is based on the widely used SDR technique, and the other
is the ADMM-based Dinkelbach method. Numerical results
demonstrate that the Dinkelbach method is superior to the
SDR method in both the rate performance and the running
time. Moreover, for the tested large-scale antenna settings, the
Dinkelbach method is able to approach the optimal secrecy
rate.
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