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ABSTRACT

We consider the over-fitting problem for multinomial proba-

bilistic Latent Semantic Analysis (pLSA) in collaborative fil-

tering, using a regularization approach. For big data applica-

tions, the computational complexity is at a premium and we,

therefore, consider a maximum a posteriori approach based

on conjugate priors that ensure that complexity of each step

remains the same as compared to the un-regularized method.

In the numerical section, we show that the proposed regulari-

zation method and training scheme yields an improvement on

commonly used data sets, as compared to previously propo-

sed heuristics.

Index Terms— Recommender systems, collaborative fil-

tering, conjugate prior regularization, probabilistic latent se-

mantic analysis.

1. INTRODUCTION

Personalized recommender systems are commonplace in on-

line marketplaces and media services, providing a useful tool

for users to navigate the myriad of available items or media,

and similarly useful for the vendors for increasing revenue

[1]. Herein, we consider Collaborative Filtering (CF) [2–11],

which is an approach within recommender systems, where

the recommendations are personalized such that items are re-

commended for each consumer based on the preferences of

other consumers that have similar historical consumption pat-

terns [3, 12]. Alternatively, one may use content based me-

thods, where the items meta-data are used to group items,

so that items that are similar to previously consumed items

can be recommended. However, when the prior consumpti-

on records for many users are available, it is well established

that the CF based methods offer superior performance [13],

with the best recent results coming from matrix factorization

based methods [2–11]. This paper considers a probabilistic

approach termed the probabilistic Latent Semantic Analysis

(pLSA), which has many applications in information retrieval

and filtering, and is an important tool for machine learning in

text [3, 12]. In the recommendation setting, pLSA has been

used for clustering users together based on their item prefe-

rences and similar tastes in order to make accurate rating pre-

dictions on items they have not yet consumed [3]. The model

is exposed to user observations in order to learn which cluster

the users belong to, as well as the distribution of the ratings

for each movie in the clusters. For continuous rating data, the

Gaussian emission pLSA model yields a low rank matrix that

may be used to give predictions on all unconsumed items for

all users; a similar prediction can be made for the multinomi-

al case. Herein, we will consider the multinomial version of

the model, which is applicable to a wide range of data, e.g.,

binary, such as when only a consumption is registered using

a like or a dislike, or purely categorical, such as when a vote

with an emoji is given on Facebook. The three main chal-

lenges with multinomial pLSA in CF are (i) the over-fitting

problem, which results in less reliable model parameters and

increases the prediction errors for unseen data [3, 12, 14], (ii)

the sparsity of the data, i.e., most users only consume a small

percentage of the available items and even fewer ratings, and

(iii) the computational cost of the estimation and training of

the system. In this work, we generalize the model presented

in [3] by introducing a conjugate prior on the model parame-

ters, to mitigate the over-fitting and to better handle the sparsi-

ty in the data. Similar approaches have been suggested for the

Gaussian mixture model [15, 16] and the Gaussian emission

pLSA model [17], which we herein generalize to the catego-

rical pLSA model. The resulting model has the same comple-

xity as the non-regularized version and can be seen as a sim-

plified version of the model proposed in [14]. By adding bi-

as to the model parameter values through the conjugate prior,

users or items with few observations are less prone to be over-

fitted, thus yielding better fit to unseen data. Furthermore, we

show that, the pragmatic choice of performing maximum a

posteriori (MAP) estimation with conjugate priors results in

an expectation maximization (EM) algorithm that avoids the

otherwise typical Markov Chain Monte Carlo or approxima-

te inference [14]. We also compare the proposed regularized

MAP pLSA to the multinomial pLSA model with early stop-

ping presented in [3,18], which is a commonly used heuristic

in machine learning to counter act over-fitting.
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2. MODEL DEFINITIONS

We use the following notation: define a set of users U =
{u1, . . . , um} and items I = {i1, . . . , in}. The users have the

opportunity to rate items with a preference value from an ex-

plicit rating scaleR, where the given rating data ru,i is stored

in an m×n matrix R. In real-world applications, R is sparse,

as users tend to only rate a small number of items [3, 12, 13].

For the latent states, we use z ∈ {z1, . . . , zK}, where K de-

notes the number of possible states. The main idea with pLSA

is to introduce latent states z ∈ {z1, . . . , zK}. Unlike proba-

bilistic user-clustering models wherein each user is associated

with a single latent state, every single observation 〈u, i, r〉 is

in pLSA connected to a latent state. Based on the multinomial

pLSA model for discrete data presented in [3], a conditional

probability for a user u is associated to state z, P (z|u), and

another conditional probability for the ratings given item i and

state z, P (r|i, z). Additionally, u is assumed to be, conditio-

nally on z, independent of i, which leads to to the following

mixture model for a single rating

P (r|u, i; θ) =
∑

z

P (r|i, z)P (z|u) (1)

where θ is the unknown parameter vector; there are K|U| +
K|I||R|multinomial probabilities in θ = {P (r|i, z), P (z|u)}.
The summation over z means summing over all possible la-

tent states. Predicting the missing rating data, one may use

the expected value of a rating given by [3]

r̂u,i = E[r|u, i] =
∑

r∈R

rP (r|u, i)

=
∑

r∈R

r
∑

z

P (r|i, z)P (z|u)
(2)

Thus, the model may be used to offer suggestion for new

items to be consumed on an individual basis, as the proba-

bility of an observation coming from a specific cluster is user

specific, whereas the emission probabilities are item and clu-

ster specific. The parameter learning optimization procedure

is performed by optimizing the unknown parameters with the

EM algorithm. Using EM for training model parameters is ve-

ry common in latent variable models, such as pLSA, since the

latent states z are unobservable and embedded in complicated

manner in the log-likelihood function [3, 19].The data tends

to be sparse, having comparably as many values as the num-

ber of parameters, and unbalanced, i.e., some users or items

could be associated with only a few observations; this may

lead to unreliable parameter estimates [12]. This means that

users and items could be trapped in certain consumption or

rating patterns, thus resulting in inaccurate predictions on un-

seen data. To mitigate this over-fitting, we here propose using

a regularization method in order to balance and control the

parameter values.

Proposed ES pLSA Pop

RMSE
mean 1.2375 1.2727 1.3712

std 0.0064 0.0070 0.0062

MAE
mean 0.9711 0.9834 1.0908

std 0.0047 0.0052 0.0048

Table 1. The mean and standard deviation of the prediction

error, resulting from the EachMovie data set.

3. MAP ESTIMATION WITH CONJUGATE PRIORS

As the conjugate prior of a multinomial distribution is the Di-

richlet density, the posterior distribution when using such a

prior will be Dirichlet distributed as well [15, 16]. The prior

distribution may thus be expressed by a Dirichlet distribution

of order m ≥ 2, with parameters w = (w1, . . . , wm), where

wi ≥ 0, with
∑m

i=1 wi = 1 [19]. The resulting probability

density function may be expressed as

Dir({w}|{γ}) =
Γ (

∑m
i=1 γi)

∏m
i=1 Γ(γi)

m
∏

i=1

w
γi−1
i (3)

where γ = (γ1, . . . , γm) are the hyperparameters and Γ(·)
denotes the Gamma function1 [18]. As a result, the prior dis-

tribution of the parameters θ may be expressed as

P (θ) = Dir({P (r|i, z)}|{γi,r,z}) · Dir({P (z|u)}|{γu,z})

∝
∏

z





∏

i,r

P (r|i, z)γi,r,z−1
∏

u

P (z|u)γu,z−1





(4)

where ϕ = {γi,r,z, γu,z} are the hyperparameters of the con-

jugate prior distributions. These hyperparameters may be se-

lected in different ways; for instance, if P (z|u) is considered,

they may be selected as

γu,z = n{P (z|u)} + 1 (5)

where n{P (z|u)} can then be interpreted as an additional set

of artificial data points to regularize the estimates of P (z|u).
In [3], the EM algorithm is used for minimizing the nega-

tive log-likelihood

−ℓ(θ;D) = −P (D|θ) = −
∑

D

logP (r|u, i; θ) (6)

where the summation is over all observed triplets, D =
〈u, i, r〉. The EM procedure introduces variational probabili-

ty distributions Q(z|u, i, r; θ) to equation (6), which models

the probability for a latent state z to be associated with a

certain observation. Therefore, the EM algorithm will allow

Jensen’s inequality to be used to form an upper bound on the

1The Gamma function is defined as Γ(x) ≡
∫
∞

0
t
x−1

e
−t

dt .
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Proposed ES pLSA Pop

RMSE
mean 0.9193 0.9781 0.9847

std 0.0076 0.0176 0.0090

MAE
mean 0.7241 0.7807 0.7870

std 0.0049 0.0184 0.0057

Table 2. The mean and standard deviation of the prediction

error, resulting from the MovieLens data set.

likelihood, which then is to be minimized in order to obtain

the parameter estimates θ.

We can similarly extend the EM algorithm with the MAP

approach by considering the negative log-posterior, or the

sum of the likelihood function in (6) and the prior distribution

in (4), such that the optimal regularized parameter estimates

are given by

θ∗MAP = argmin
θ

−logP (θ|D)

= argmin
θ

−{ℓ(θ;D) + logP (θ)}
(7)

where

ℓ(θ;D) + logP (θ) =
∑

D

∑

z

Q(z|D; θ)log
P (r|i, z)P (z|u)

Q(z|D; θ)

+log Dir({P (r|i, z)}|{γi,r,z}) + log Dir({P (z|u)}|{γu,z})

(8)

To summarize, the MAP-based EM algorithm alternates bet-

ween the expectation and maximization step until the parame-

ter values have converged. In the E-step, the optimal variatio-

nal probabilities, denoted by Q∗, are estimated as [3, 15, 16]

Q∗(z|u, i, r; θ) =
P (r|i, z)P (z|u)

∑

z′(P (r|i, z′)P (z′|u)
(9)

Thereafter, in the M-step, one obtains the new parameter esti-

mates from equation (8) using the computed Q∗-distributions.

The regularized parameter estimates are given by

P (z|u) =

∑

〈u′,i,r〉:u′=u Q
∗(z|u, i, r; θ) + (γu,z − 1)

∑

z′

∑

〈u′,i,r〉:u′=u Q
∗(z′|u, i, r; θ) + (γu,z′ − 1)

(10a)

P (r|i, z) =

∑

〈u,i′,r′〉:i′=i, r′=r Q
∗(z|u, i, r; θ) + (γi,r,z − 1)

∑

〈u,i′,r〉:i′=i Q
∗(z|u, i, r; θ) + (γi,r,z − 1)

(10b)

where the prime signs under the summations denote a fixed

variable for the computed conditional probability. It should be

noted that this method reduces to the EM-algorithm presented

in [3] in the case when all hyperparameters are set to 1.

Fig. 1. Grid search over RMSE with respect to γu,z and γi,r,z
for K = 200.

4. EXPERIMENTAL RESULTS

To investigate the proposed conjugate-prior-regularized MAP

pLSAs capability to mitigate overfitting, we compare it to

both pLSA using the standard EM with an early stopping

(ES) condition and to the so-called Pop item-average esti-

mator [13]. This evaluation is done using both the EachMo-

vie data set, which contains 2, 811, 718 ratings, entered by

61, 265 users, of 1623 items (movies) [20], and the Movie-

Lens 1M dataset [21], which consists of 1, 000, 209 ratings

entered by 6, 040 users, rating 3, 900 items (movies). The da-

ta is randomly divided into three sets: training, validation, and

test data. To reduce the variance, this subdivision was repea-

ted ten times on the original data set. Users that have less than

three observations and items which have not been rated are

removed from the data sets. Partitioning the data into the dif-

ferent sets was performed with the leave-one-out algorithm,

such that one observation from every user is randomly picked

and left out from the training set. This procedure was executed

twice to obtain a validation and a test set. To evaluate the mo-

dels, the training procedures of the regularized pLSA model

was terminated when the difference in log-likelihood between

the two latest EM iterations was smaller than 10−3. The ES

pLSA was terminated, as in [3], before the prediction error of

the validation set had increased, and then performed one last

EM training step including the training plus validation data.

When the final parameters were updated, the prediction errors

are computed for the test set, using

RMSE =

√

√

√

√

1

|R|

∑

〈u,i〉∈R

(ru,i − r̂u,i)
2

MAE =
1

|R|

∑

〈u,i〉∈R

|ru,i − r̂u,i|
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Fig. 2. Average RMSE on three different test sets with respect

to γu,z , different state sizes K and γi,r,z = 1.0 and 1.5.

where R is the rating matrix containing all real observations

and r̂u,i is the predicted rating to the actual rating ru,i.

To find suitable hyperparameters for the conjugate priors,

we propose using a cross-validation method and a simple grid

search, where the EM trainings were made with different hy-

perparameter values and evaluated by computing the RMSE

from the trained pLSA parameters on a test set. After some

test simulations, it was found that the hyperparameter γu,z
was more beneficial for decreasing the RMSE and that small

variations on γi,r,z did not have much impact to achieve smal-

ler prediction errors. Thus, the hyperparameter values were

selected to be 16 points in the interval 1.0 ≤ γu,z ≤ 1.2
and eleven equidistant points in 1.0 ≤ γi,r,z ≤ 6.0. As grid

searches may be time consuming, the procedure were only

evaluated on one test set and the state size was selected to

be K = 200, since 200 states was determined to be a good

state size selection for the multinomial pLSA model in [3].

The resulting grid search can be seen in Figure 1. Increasing

the hyperparameter values results in that the MAP-based EM

training reaches the convergence criteria after about five ite-

rations compared to above 40 iterations, required otherwise.

Since the conjugate priors smears out the conditional proba-

bilities P (z|u) and P (r|i, z), the parameter values will be

equally valued in the beginning of the learning procedure. As

the hyperparameter value increases, it will be difficult for the

pLSA parameters to learn from the training data, as the priors

will dominate the observed data, which leads to very small

changes of parameter values when the training starts. Thus,

the stopping criteria might falsely indicate that the parame-

ters already have converged, which results in poor predictions

and larger errors on unseen data points. However, the RMSE

do increase when the hyperparameter values are increased,

which was proved by forcing the EM algorithm to perform 60

iterations.

Iterations

0 5 10 15 20 25 30 35 40 45 50

R
M

S
E

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

MAP pLSA training

ES pLSA training

MAP pLSA test

ES pLSA test

Fig. 3. RMSE for training and test data from the EachMovie

data set over iterations. The state sizes are K = 50 and K =
200 for the MAP and ES pLSA respectively. The graph also

shows when the early stopping occurs as the dashed line.

From Figure 1, it is evident that the selection of hyperpa-

rameters is sensitive for K = 200. In order to obtain stati-

stical significance from the grid search, further experiments

with the grid search were performed to find the best possible

values. Since γi,r,z does not help much when decreasing the

RMSE, only two values, γi,r,z = 1 and 1.5, were selected for

the further experiments. We also investigated if better predic-

tion accuracy could be found for the state sizes K = 10, 50,

and 100, in addition to K = 200. Figure 2 shows the results

when averaging three test sets. It is worth noting that a similar

RMSE is achievable with each of the tested state sizes, alt-

hough the computational time is shorter when using a smaller

K. To find suitable hyperparameters to the conjugate priors,

we propose using a cross-validation method, where the MAP

pLSA parameters are trained with different hyperparameter

value combinations, choosing the pair achieving the best re-

sults on the test sets. We examined the methods with 10 data

sets picked with different random seeds and averaging the re-

sulting prediction errors from each test set. From earlier ex-

periments, we found that the lowest prediction errors for the

ES pLSA are received with the latent state size K = 200. The

conjugate-prior-regularized MAP pLSA performed best with

K = 50; the results from both training procedures are shown

for γu,z = 1.08 and γi,r,z = 1.5. Both model training proce-

dures are shown in Figure 3. From this figure, it is clear that

the proposed MAP pLSA has mitigated the over-fitting, since

the gap between its training and test errors is reduced compa-

red to the ES pLSA. Table 1 and 2 summarize the mean and

standard deviation of the RMSE and MAE for both models

and the POP estimator, where for the MovieLens data set, a

similar hyperparameter grid search was performed.
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